Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Селективность химии поверхности адсорбента

    С биомедицинскими и санитарными проблемами неразрывно связаны проблемы гигиены окружающей среды, качества и хранения продуктов питания. Для контроля уровня загрязнений в продуктах питания, атмосфере, воде, почве сильно токсичными, часто канцерогенными веществами разнообразной химической природы, необходима разработка как адсорбентов-накопителей, так и адсорбентов для последующего их хроматографического анализа. Для очистки воздуха и стоков на промышленных предприятиях и обеспечения жизни в герметических кабинах при работе в космосе или под водой необходимо создание соответствующих легко регенерируемых адсорбентов — поглотителей многих вредных примесей. Во всех этих случаях для повышения селективности адсорбентов, т. е. избирательности их действия, необходимо контролировать и направленно изменять химию поверхности адсорбентов. Вопросы экономичности процессов как поглощения, так и регенерации адсорбентов также тесным образом связаны с химией поверхности твердых тел. [c.6]


    Из этого неполного перечня видно, как важны исследования химии поверхности неорганических и органических твердых тел и их межмолекулярного взаимодействия с компонентами различных сред. Эти исследования требуют объединения методов неорганического и органического синтеза с самыми современными физическими методами изучения структуры поверхности твердого тела и строения молекул. В кратком курсе лекций невозможно осветить все научные и прикладные аспекты химии поверхности твердых тел, ее модифицирования и влияния на межмолекулярные и химические взаимодействия с различными средами. В пособии рассмотрена хими/ поверхности адсорбентов, применяемых в газовой и молекулярной жидкостной хроматографии, и, соответственно, адсорбция из газовой фазы и жидких растворов при малых концентрациях, лежащая в основе селективности этих видов хроматографии. Эти проблемы исследованы как на макроскопическом уровне с использованием термодинамических характеристик адсорбции, так и на микроскопическом (молекулярном) уровне с привлечением молекулярно-статистической теории адсорбции и теории межмолекулярных взаимодействий. [c.7]

    Развитие количественной молекулярно-статистической теории селективности жидкостной хроматографии в различных полуэмпирических приближениях облегчается при использовании такого рода корреляционных зависимостей между определенными из хроматограмм константами Генри для адсорбции из растворо в и параметрами структуры молекул компонентов для данного адсорбента и данного элюента, а затем и при изменении химии поверхности адсорбента и состава элюента. [c.283]

    Геометрическую неоднородность поверхности можно в значительной степени устранить, применяя непористые или макропористые адсорбенты. В этих случаях основное влияние на удерживающую способность и на селективность газо-адсорбционных колонок будет оказывать химия поверхности адсорбента. Химия твердого тела определяет характер и энергию межмолекулярного взаимодействия, возникающего между молекулами разделяемых веществ и твердым телом. При адсорбции в зависимости от химической природы молекул и поверхностей могут проявляться различные взаимодействия. [c.86]

    От влияния геометрической неоднородности поверхности и пор можно в значительной степени освободиться, применяя кристаллические непористые и пористые, а также аморфные достаточно широкопористые адсорбенты и модифицируя химически или адсорбционно их поверхность. В этом случае основное влияние на адсорбционные свойства и на селективность газо-адсорбционных колонок будет оказывать химия поверхности адсорбента. Химия поверхности твердого тела определяет характер и энергию межмолекулярного взаимодействия, возникающего между молекулами разделяемых веществ и твердым телом. Взаимодействие молекул газовой смеси с однородной твердой поверхностью и состояние адсорбированных молекул на достаточно однородной поверхности (газо-адсорбционный вариант хроматографии) легче поддаются теоретической трактовке, чем молекулярные взаимодействия при растворении в объеме жидкой пленки (газо-жидкостный вариант хроматографии). В растворе все молекулы подвижны и молекулы данного компонента со всех сторон окружены другими молекулами, а при адсорбции на достаточно гладкой поверхности твердого тела молекулы взаимодействуют в основном только с ближайшими силовыми центрами этого твердого тела и эти центры фиксированы. [c.16]


    Селективность жидкостной адсорбционной хроматографии зависит как от размера пор и химии поверхности адсорбента, так и от природы и состава элюента. Большое значение для регулирования селективности имеет также непрерывное адсорбционное модифицирование поверхности (так называемое динамическое модифицирование), происходящее при добавлении в элюент в малых концентрациях сильно адсорбирующихся веществ— диаминов, органических и неорганических ионов, комплексообразующих веществ. Все это позволяет осуществлять разделение соединений по природе, структуре, положению и размерам углеводородных групп, а также по природе, числу и доступности полярных групп. Во всех случаях внутримолекулярные вращения фрагментов молекул и степень их заторможенности оказывают большое, часто решающее влияние на удерживание, что характерно для огромного числа биологически активных веществ. [c.12]

    Влияние геометрической структуры адсорбентов. В связи с медленностью диффузии в жидкости по сравнению с диффузией в газах в жидкостной хроматографии приобретают большую важность вопросы диффузионных размываний и достижения равновесия [12]. Эффективность хроматографических колонок (характеризуемая шириной полосы) при заданной селективности, связанной в основном с химией поверхности адсорбента, в наибольшей сте- [c.417]

    Для достижения разрешения Я= (касание пиков) при малом а =1,01 требуется около 150000 эффективных тарелок, а при а=1,10 уже только около 2000. Для достижения 1,5 (при этом достигается полное раздвигание пиков 1 и 2 с участком нулевой линии между ними) при а=1,01 требуется около 350000 теоретических тарелок, а при а=1,10 только около 5000. Эти числа показывают, что для реализации селективности колонны, определяемой химией поверхности и структурой скелета адсорбента, а также природой элюента, в жидкостной хроматографии для разделения близких по структуре молекул нужны весьма высоко [c.285]

    Для выбранного сорбента (по геометрии зерен, пор и химии поверхности) от природы и состава элюента зависят все основные величины, определяющие степень разделения К селективность системы адсорбент - элюент а, факторы емкости анализируемых веществ к, эффективность колонки. Природа элюента влияет на работу детектирующих систем. [c.306]

    Рассмотренный в этой главе материал показывает, что изменяя надлежащим образом химию поверхности твердого тела, можно создать широкий набор неспецифических и специфических адсорбентов для газовой хроматографии, которые смогут обеспечить необходимую селективность при высокой эффективности колонки, а также при достаточной термической и химической стабильности адсорбента. [c.62]

    Показано, что наблюдаемое в последнее время развитие адсорбционной хроматографии является следствием развития теории межмолекулярных взаимодействий и методов направленного синтеза адсорбентов с регулируемой структурой и химией поверхности. Обоснован выбор неподвижной фазы и элюента на основе качественной и количественной связи определяющих селективность констант термодинамического равновесия с характеристиками межмолекулярного взаимодействия. [c.295]

    Селективность адсорбента определяется химией и геометрией его поверхности и для данного адсорбента или данной его модифицированной формы (см. гл. 7) не изменяется. Поэтому рассмотрим далее влияние на R емкости и эффективности колонны. [c.148]

    Повышение эффективности хроматографического разделения в значительной мере связано с оптимизированным по различным параметрам колонны приближением к термодинамической селективности. Поэтому весьма важна оптимизация выбора неподвижной фазы (адсорбента, растворителя) и элюента на основе качественной и по возможности количественной связи определяющих селективность констант термодинамического равновесия с характеристиками меукмолекулярного взаимодействия газовых и жидких растворов с адсорбентами. В простейших случаях неспецифического взаимодействия для этого используются молекулярно-статистические выражения удерживаемых объемов (констант адсорбционного равновесия) газов и паров через атом-атомные потенциальные функции взаимодействия атомов молекулы с атомами твердого тела в соответствующих валентных состояниях этих атомов. В статье приводятся результаты молекулярно-статистических расчетов удерживаемых объемов для ряда углеводородов на графитированной термической саже и в цеолитах. Дается оценка энергии специфического молекулярного взаимодействия при адсорбции, в частности энергии водородной связи, и рассматривается качественная связь селективности разделения с соотношением вкладов специфических и неснецифических взаимодействий в общую энергию адсорбции и с температурой. С этой точки зрения рассматриваются возможности использования в хроматографии атомных, молекулярных и ионных кристаллов, гидроксилированных и дегидроксилированных поверхностей окислов, модифицирующих монослоев и полимеров. Рассматриваются также некоторые возможности адсорбционной жидкостной молекулярной хроматографии с использованием соответствующего подбора геометрии и химии поверхности адсорбента, молекулярного поля (состава) элюента и температуры колонны. Приводятся примеры перехода от адсорбционных к ситовым гель-фильтрационным разделениям полимеров па микропористых кремнеземах. [c.33]


    Преодоление трудностей на пути достижения достаточно высокой эффективности колонн в ГАХ и ЖАХ, приведшее к резкому уменьшению размывания пиков, их сужению и высокой симметричности, позволяет реализовать высокую селективность адсорбционных систем и проводить весьма тонкие и быстрые разделения на коротких колоннах. Для решения этих задач необходимо изучение межмолекулярных взаимодействий в системах газовая смесь—адсорбент и, соответственно, жидкий раствор — адсорбент. Для этого, в свою очередь, необходимы, с одной стороны, регулирование геометрии и химии поверхности адсорбентов, разработка методов их геометрического, адсорбционного и химического модифицирования, разработка комплекса химических и физических методов исследования структуры и состава поверхности адсорбентов и, с другой стороны, исследования структуры и свойств разделяемых молекул как в газе-носителе, так и в жидком растворе — в элюентах разной природы и состава. Изучение межмолекулярных взаимодействий при адсорбции должно основываться на использовании молекулярностатистической теории адсорбции и теории межмолекуляр1ных взаимодействий. Разработка этих теорий встречает большие трудности, в особенности при адсорбции на неоднородных адсорбентах и при адсорбции из растворов. Следует, однако, отметить, что необходимость решения все более сложных чисто [c.12]

    Разделение на специфических адсорбентах. Влияние химии поверхности адсорбента и ее модифицирования на жидкостно-адсорб-нионную хроматографию компонентов из более слабо адсорбирующегося растворителя в общем сходно с таковым в газо-адсорбционной хроматографии. Однако в случае жидкостной хроматографии надо учитывать молекулярные взаимодействия с молекулами растворителя в соответствии с закономерностями адсорбции из растворов. Поэтому в жидкостно-адсорбционной хроматографии целесообразнее говорить о селективности хроматографической системы в целом адсорбент — растворенные вещества — растворитель. В качестве адсорбентов в жидкостно-адсорбционной хроматографии в основном использовались различные препараты окиси алюминия (активная,нейтральная и кислая окись алюминия) [46] и силикагели как в обычном виде,т.е. [c.215]

    Таким образом, изменяя химию поверхности адсорбента и природу элюента, можно в широких пределах регулировать селективность жидкостной хроматографической системы и оптимизировать выбор этих факторов для разделения различных конкретных смесей. Изменить химию поверхности адсорбирующей поверхности можно, нанося на адсорбент-носитель пленку жидкости. Однако применяемые в жидкостно-жидкостной хроматографии лсидкие фазы, отложенные на поверхности адсорбентов-носителей, постепенно выводятся из колонны за счет растворения в элюенте, что приводит к нестабильности параметров удерживания и искажению работы детектора. [c.223]

    Адсорбционное модифицирование графитированных саж и кремнеземов с (успехом используют для получения адсорбентов с разной химией поверхности. Для этого поверхность адсорбента-носителя покрывают плотными монослоями сильно адсорбирующихся на нем молекул или макромолекул, содержащих разные функциональные группы. Таким образом можно значительно увеличить набор селективных адсорбентов для хроматографии и в результате увеличения однородности поверхности и блокировки тонких пор повысить эффективность колонн. При этом достигается не только нужная специфичность адсорбента, но и, благодаря экранированию модификатором силовых центров самого адсорбента-носителя, снижается общая энергия адсорбции, в особенности вклад в нее энергии неспецифических межмолек улярных взаимодействий. Это вызывается тем, что, в отличие от неорганического адсорбента-носителя, средняя поверхностная концентрация силовых центров (атомов, образующих молекулы модификатора) меньше, так как расстояния между молекулами модификатора даже в- плотном монослое определяются их вандерваальсовыми размерами. Уменьшение энергии адсорбции позволяет понизить температуру колонны при разделении данной смеси. [c.76]


Смотреть страницы где упоминается термин Селективность химии поверхности адсорбента: [c.2]    [c.10]   
Адсорбционная газовая и жидкостная хроматография (1979) -- [ c.48 , c.80 , c.226 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбенты селективность

Поверхность адсорбента

Поверхность адсорбента поверхностях

Химия поверхностей



© 2025 chem21.info Реклама на сайте