Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иридий открытие

    М-р Джон Ньюлендс зачитал статью, озаглавленную Закон октав и причины численных соотношений между атомными весами . Автор заявил об открытии им закона, согласно которому элементы, аналогичные по своим свойствам, связаны особыми соотношениями, подобными существующим в музыке между произвольной нотой и ее октавой. Исходя из атомных весов элементов в шкале Канниццаро, автор располагает известные элементы в определенной последовательности, начиная с элемента с минимальным атомным весом (водород) и кончая торием (атомный вес 231,5) однако он помещает никель и кобальт, платину и иридий, церий и лантан и т. д. как абсолютно сходные элементы в одной и той же строке. Расположенные таким образом пятьдесят шесть элементов охватывают восемь октав, и автор отмечает, что в результате хлор, бром, иод и фтор оказываются на одной строке, т. е. занимают аналогичные места в его таблице. Азот и фосфор, кислород и сера и т.д. также рассматриваются как элементы, образующие подлинные октавы. Предположения автора иллюстрируются таблицей, представленной на заседании общества и воспроизводимой ниже  [c.326]


    Температуру контролировали иридий-иридиево-родиевой термопарой с открытым спаем. [c.71]

    Вся первая половина XIX в. отмечена открытием большого числа новых элементов. Английский химик Г. Дэви в начале века впервые применил электролиз растворов и расплавов солей для получения новых элементов. Так ему удалось получить и описать калий, натрий, магний, стронций, барий, кальций, газообразный хлор. В те же годы Берцелиус открыл церий, селен, кремний, цирконий, торий, а другие химики — бериллий, бор, палладий, радий, осмий, иридий, ниобий, тантал, йод и бром. К 1830 г. было выделено уже 55 элементов. Требовалась их систематизация с целью классификации по свойствам, сужения направления поиска новых элементов и предсказания свойств пока не открытых элементов. [c.13]

    Открытие иридия. Фильтрат, полученный по выделении родия, охлаждают, поместив стакан в сосуд с дробленым льдом. Чтобы осадить [c.583]

    История открытия четырех из пяти платиноидов связана с именами двух английских ученых, двух современников. Уильям Волластон в 1803—1804 гг. открыл палладий и родий, а другой англичанин, Смитсон Теннант (1701—1815), в 1804 г. — иридий и осмий. Но если Волластон оба свои элемента нашел в той части сырой платины, которая растворялась в царской водке, то Теннанту повезло при работе с нерастворимым остатком как оказалось, он представлял собой естественный природный сплав иридия с осмием. [c.202]

    Клаус отмечал, что иридием он занимался больше, чем другими металлами платиновой группы. В главе об иридии он обратил внимание на неточности, допущенные Берцелиусом при определении основных констант этого элемента, II объяснил эти неточности тем, что маститый ученый работал с иридием, содержащим примесь рутения, тогда еще не известного химикам и открытого лишь в ходе химического исследоваиия остатков уральской платиновой руды и металла рутения . [c.209]

    Признание факта существования изотопов стабильных элементов и выяснение загадки целочисленности атомных весов изотопов стимулировало развитие техники разделения изотопов. Прежде всего, оно было связано с усовершенствованием масс-спектрометров, основанных на комбинировании электрических и магнитных полей по методу Астона или применении постоянных магнитов по схеме Демпстера, и увеличении их разрешающей силы. Если первый спектрограф Астона имел разрешение на уровне 1/1000, а второй — до 1/10000, то к концу 20-х годов масс-спектрометры достигают разрешения 1/100000 и лучше [13], что позволяет открывать уже не только главные, наиболее распространённые, но и редкие изотопы элементов (детали см. в табл. 2.1). После этого основной технической проблемой становится получение подходящих источников пучков элементов (метод анодных лучей) и усовершенствование источников — в особенности, тяжёлых элементов с малой относительной разностью масс изотопов и высокой температурой плавления. Одним из важных физических результатов, достигнутых на улучшенных масс-спектрометрах, стало прямое доказательство соотношения Эйнштейна об эквивалентности массы и энергии в ядерной реакции расщепления лития-7 [14], открытой в 1933 году Кокрофтом и Уолтоном. В результате систематических поисков изотопов к 1935 году исследование изотопного состава было проведено уже практически для всех стабильных элементов, кроме платины, золота, палладия и иридия, которые были вскоре изучены в основном Демпстером [15] и частично рядом других авторов (см. детали в табл. 2.1). В изучении изотопов стабильных элементов следует отметить роль Ф. Астона, которым было открыто 206 из общего числа 287 стабильных и долгоживущих изотопов. [c.40]


    История открытия четырех из пяти платиноидов связана с именами двух английских ученых, двух современников. Уильям Волластон в 1803—1804 годах открыл палладий и родий, а другой англичанин, Смитсон Теннант (1761—1815), в 1804 году — иридий и осмий. Но [c.164]

    В предыдущих заметках довольно много говорилось о радиоизотопе иридий-192, применяемом в многочисленных приборах и даже причастном к важному научному открытию. Но, кроме ири-дия-192, у этого элемента есть еще 14 радиоактивных изотопов с массовыми числами от 182 до 198. Самый тяжелый изотоп в то же время — самый короткоживущий, его период полураспада меньше минуты. Изотоп иридий-183 интересен лишь тем, что его период полураспада — ровно один час. Стабильных же изотопов у иридия всего два. На долю более тяжелого — иридия-193 в природной смеси приходится 62,7%. Доля легкого иридия-191, соответственно, 37,3%. [c.176]

    Берг-пробирер лаборатории Петербургского горного корпуса В. В. Любарский в 1823 году исследовал эти зерна и установил, что загадочный сибирский металл принадлежит к особому роду сырой платины,, содержащей знатное количество иридия и осмия . В том же году последовало высочайшее повеление всем горным начальникам искать платину, отделять ее от золота и представлять в Петербург. В 1824 году па склоне горы Благодать, а позже в Нижнетагильском округе были открыты чисто платиновые россыпи. В следующие годы платину на Урале нашли еще в нескольких местах. Уральские место- [c.180]

    Тананаев Н. А. Капельно-бесстружковый метод открытия платины, палладия, иридия, родия и золота в драгоценных сплавах. ЖАХ, 1946, 1, вып. 4, с. 250—258. Резюме на англ. яз. 6748 [c.220]

    При испытании тонких или пористых покрытий из золота появляется слабо окрашенное пятно в том случае, когда испытывается позолота на серебре, в пятне видны темные части (серебро). Очень тонкое покрытие по меди или латуни не может быть открыто этим способом. Открытие золота возможно в присутствии ряда других металлов и сплавов (никель, серебро, платина, палладий, иридий, пр ипой, латунь, белые металлы, бронза, сталь, марганец, молибден, тантал, вольфрам, ртуть, кадмий, алюминий, олово, цинк, свинец). [c.216]

    ОТКРЫТИЕ СЛЕДОВ ЗОЛОТА, ПАЛЛАДИЯ, РОДИЯ И ИРИДИЯ в ПЛАТИНЕ [c.220]

    Выполнение анализа. Для открытия следов золота, палладия, родия и иридия в платине адсорбируют эти металлы на поверхности гидроокиси магния и после растворения гидроокиси открывают описанными выше реакциями. [c.220]

    Для открытия иридия отдельно растворяют 1 г платины и переводят его в хлорид, как описано выше. После нейтрализации раствора хлористой платины прибавляют бромную воду (по 0,5 лгл иа каждый миллилитр раствора) и суспензию гидрата окиси магния до тех пор, пока дно стакана не будет покрыто слоем гидроокиси. Энергично взмучивают осадок в течение 30 мин., фильтруют, промывают и растворяют гидрат окиси магния, как описано выше. Осадок на фильтре (высшие окислы иридия) многократно (10—12 раз) промывают горячей водой и растворяют в горячей азотной кислоте (1 1). [c.221]

    В то время как Волластон проводил свои успешные исследования части сырой платины, растворимой в царской водке, С. Теннант , работавший в контакте с Волластоном, заинтересовался частью платины, нерастворимой в царской водке. Вскоре (в 1804 г.) исследования увенчались открытием двух новых металлов платиновой группы — осмия и иридия. [c.88]

    После открытия изомерии подобные факты привлекли внимание Берцелиуса и Дюма. В 1830 г. Берцелиус обсуждал вопрос, являются ли подобные явления сходными с изомерией. В 1831 г. Дюма отметил, что у некоторых пар элементов (платина—иридий, кремний—бор, молибден—вольфрам) атомные веса мало отличаются друг от друга или же находятся в простых отношениях друг с другом. На этом основании он высказал идею, что элементы этих пар, возможно, представляют различные формы одного и того же элемента и что углерод в органических соединениях (в различных веществах и даже в различных частях одного и того же [c.342]

    Будучи сильно распылены по различным горным породам, платиновые металлы стали известны человечеству сравнительно недавно. Раньше других, в 1750 г., было установлено существование платины. Затем были открыты палладий, родий, осмий и иридий. Последний платиновый металл — рутений — был открыт в 1844 г. К. К. Клаусом, назвавшим его в честь нашей страны (Еи1Ьета [c.530]

    В 1886 г этот французский химик электролизом фтороводорода по лучил фтор Ученый знал о разрушающих свойствах фтора, поэтому он изготовил электролизер целиком из платины, электроды — из ириди ево платинового сплава, а чтобы охладить пыл элемента незнакомца, электролиз вели при -23 °С Химик заявил об открытии нового элемен та, и Парижская академия наук назначила комиссию для проверки ре зультатов Перед началом испытаний ученый еще раз перегнал исход ное сырье — плавиковую кислоту — для повторной очистки И опыт не получился очень чистая плавиковая кислота не проводила электрический ток Однако в последующих опытах химику удалось показать, что добавление нескольких кристалликов фторида калия увеличи вает проводимость и электролиз идет успешно Назовите имя этого хи мика [c.279]


    Вскоре после открытия Келвина [1] японские исследователи установили, что водные растворы Р1(этилендиамин)2С12 [144] и различных аминных производных галогенидоб родия (III) [145] катализируют гидрирование хинонов, фумаровой кислоты и гидроксиламина. Эти работы положили начало широкому изучению активации водорода солями переходных металлов (см. обзоры [4, 5]). В водном растворе при температурах ниже 80 °С ионы марганца(VII), рутения(IV), рутения(III), осмия(IV), ро-дия(1П), иридия( ), палладия(П), меди(П), серебра(1) и [c.61]

    В 1818—1819 гг. сноВ а была апубликоваща большая серия работ Тевара [15, 16], в которой он сообщал о расщеплении открытой им (Перекиси водорода на различных металлах л окислах. Им были Испробованы серебро, медь, золото, платина, железо, цинк, олово, свинец, висмут, осмий, палладий иридий, родий, перекись марганца и другие окислы металлов, а также органические вещества преимущественно белмо вого характера, 1в том, числе клеточные ткаии организмов, я вля(вщ.иеся фактически катализаторами. Тенар тщательно выяснил и разделил случаи распада пер екиси водорода, происходящ ие с окислением соприкасающихся с ее растворами веществ, и случаи, когда агент разложения остается без изменения. [c.24]

    Специфические вопросы, относящиеся к характеристике катализаторов, стали возникать уже с первых шагов гетерогенного катализа. В частности, один из главных вопросов в этой области, а именно вопрос о том, всем ли твердым телам присущи каталитические способности разлагать те или иные вещества, возник еще в начале прошлого столетия после работ Тенара по разложению аммиака и, особенно, перекиси водорода. Как известно (см. гл. II), Тенар наблюдал расщепление открытой им перекиси водорода под влиянием различных металлов (серебра, золота, ртути, никеля, меди, платины, палладия, осмия, родия, иридия), окислов, сульфидов, угля и даже под влиянием животных тканей. Дйвольно многочисленные опыты в этом направлении самого Тенара, а затем ( применительно к другим веществам) Г. и Э. Дэви, Деберейнера и других иоследо1вате-лей поз волили уже в то время получить по этому вопросу кое-какие разъяснения. [c.191]

    Реакция с хлористым аммонием применима для открытия иридия в хлороплатинате и диаминдихлориде платины [35—39]. В растворах, содержащих платину, осадок хлороиридата аммония может иметь различную окраску — от оранжевой до красновато-черной в зависимости от количества присутствующей платины. [c.80]

    В 1958 году молодой физик из ФРГ Рудольф Мбссбауэр сделал открытие, обратившее па себя внимание всех физиков мира. Открытый Мёссбауэром эффект позволил с поразительной точностью измерять очень слабые ядерпые явления. Через три года после открытия, в 1961 году, Мбссбауэр получил за свою работу Нобелевскую премию. Впервые этот эффект обнаружен на ядрах изотопа иридий-192. [c.175]

    Одно из интересных направлений катализа было открыто благодаря тому, что химики научились синтезировать молекулы, ядро которых состоит из нескольких химически связанных атомов металла. Размеры молекул этих кластерных соединений больше, чем у молекул гомогенных катализаторов, но меньше, чем у частиц металла, служащих гетерогенными катализаторами. Большой интерес вызывает то обстоятельство, что многие из металлов, являющихся са-мымй активными гетерогенными катализаторами, обнаруживают способность к образованию кластеров (например, родий, платина, осмий, рутений и иридий). [c.51]

    БЕССТРУЖКОВЫЙ МЕТОД ОТКРЫТИЯ ПЛАТИНЫ, ПАЛЛАДИЯ, ИРИДИЯ, РОДИЯ и ЗОЛОТА ПРИ СОВМЕСТНОМ ПРИСУТСТВИИ37,39 [c.217]

    Будучи сильно распылены по различным горным породам, платиновые металлы стали изпестны человечеству сравнительно недавно. Раньше других, в 1750 г., было установлено существование платины. Затем, в начале XIX века были открыты палладий, родий, осмий и иридий. Последний платиновый металл— рутений — был открыт только в 1844 г. профессором Казанского университета К. К. Клаусом, назвавшим его в честь нашей страны (Ruthenia — Россия). [c.696]

    Последний металл нлатиновой группы — рутений был открыт несколько позднее русским химиком К. К. Клаусом в Казани. История этого открытия в кратких чертах такова. После открытия палладия, родия, осмия и иридия в среде химиков, естественно, повысился интерес к исследованиям платиновых руд и остатков от переработки этих руд. В связи с открытием на Урале месторождений платины русское правительство было озабочено возможностями ее использования и поэтому щедро рассылало химикам Европы образцы платиновой руды и остатков от переработки руды в надежде, что будут найдены как промышленные способы извлечения платины и сопутствующих металлов, так и предложены пути использования платины в промышленности. В этот период многие видные химики тщательно исследовали [c.88]

    По методу Волластона, для получения родия из сырой платины ее обрабатывали царской водкой. При этом часть испытуемого вещества оставалась нерастворенной. Этот остаток незадолго до открытия родия был исследован Теннантом, который обнаружил в нем два новых металла — иридий и осмий [78]. Волластон исследовал растворы. Из раствора в царской водке Волластон осаждал сначала платину хлористым аммонием, затем к фильтрату после отделения хлороплатината аммония (NH4)2[Pt I6 прибавлял цинк. При этом выделялся новый осадок. Он содержал главным образом металлические палладий, родий, медь и свинец. После того как последние два металла были удалены путем растворения в слабой азотной кислоте, нерастворимую часть смешивали с половинным по весу количеством хлористого натрия, прогревали с разбавленной царской водкой и раствор выпаривали досуха. После этого, пишет Волластон, остают- [c.228]

    Клаус Карл Карлович (1796—1864) — русский химик, профессор Казанского университета. Исследуя уральскую платиновую руду, открыл новый элемент — рутений (см. стр. 173). За границей к открытию К. отнеслись сперва недоверчиво. Берцелиус даже утверждал, что рутений — нечистый иридий. Тщательная проверка подтвердила открытие нового элемента. 20 лет своей жизни К. посвятил изучению платияовых руд и рутения. К. был выдающимся педагогом ему и Зинину русская наука обязана тем, что преподавание химии в Казанском университете стояло на большой высоте, и при ничтожных средствах, отпускавшихся на преподавание химии, казанская школа дала целый ряд выдают,ихся русских химиков. [c.159]


Смотреть страницы где упоминается термин Иридий открытие: [c.572]    [c.580]    [c.583]    [c.213]    [c.218]    [c.80]    [c.272]    [c.221]    [c.362]    [c.382]    [c.276]    [c.90]    [c.14]    [c.93]    [c.45]    [c.272]   
Химико-технические методы исследования (0) -- [ c.352 ]

Органические синтезы через карбонилы металлов (1970) -- [ c.19 , c.21 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.381 ]




ПОИСК





Смотрите так же термины и статьи:

Иридий

Иридий-191 и иридий



© 2025 chem21.info Реклама на сайте