Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метод внешней анодной поляризации

    Анодная поляризация электрода от внешнего источника тока до потенциалов, при которых наступает пассивация, применяется для защиты металлов от коррозии метод анодной защиты). Анодную защиту осуществляют также, соединяя металл с другим более благородным металлическим или окисным протектором, напыляя благородный металл на защищаемый или используя благородные металлы в качестве легирующих добавок (И. Д. Томашов). В результате образования гальванической пары защищаемый металл поляризуется анодно и переходит в пассивное состояние (рис. 193). При анодной защите необходимо не допускать перепассивации металла, наступающей при слишком сильных анодных поляризациях. [c.385]


    В разделе Внутренняя защита резервуаров и аппаратов химической промышленности кроме методов катодной защиты приводятся рекомендации и по применению анодной защиты при наличии материалов, подвергающихся пассивации в соответствующих средах. Наряду с анодной поляризацией наложением тока от внешнего источника для достижения пассивного состояния рассматривается и способ защиты с применением ингибиторов. [c.14]

    За последние годы разработан метод защиты металлов от коррозии наложением анодной поляризации. Этот метод применим лишь к металлам и сплавам, способным пассивироваться при смещении их потенциала в положительную сторону, т. е. к металлам, анодная поляризационная кривая которых подобна приведенной на рис. 23.2. При достижении области пассивного состояния скорость растворения металла может резко упасть и оказаться меньшей, чем скорость его саморастворения в отсутствие внешней поляризации. [c.504]

    Электрохимическая защита. Электрохимическая защита как метод борьбы с КР многих металлов исследуется давно. Изучались многие способы электрохимической защиты — поляризация внешним током, протекторы, анодные покрытия и т. д. Полученные при этом данные были довольно противоречивы. Большая часть исследователей пришла к выводу, что катодная защита, в особенности при небольшой поляризации останавливает процесс КР [36, 59]. При увеличении катодной поляризации часто наблюдается водородное охрупчивание [60]. Анодная поляризация в основном приводит к ускорению растрескивания сталей. Иногда и анодная защита повышает устойчивость к КР [67]. [c.75]

    Метод изучения химической пассивации заключается в исследовании зависимости скорости растворения металла от потенциала, который задается электроду не с помощью внешней анодной поляризации, а введением в электролит химических соединений. Этот метод позволяет, судя по результатам, которые будут изложены ниже, получать ценную информацию о механизме действ]]я ингибиторов вблизи стационарных потенциалов, чего не позволяет метод внешней анодной поляризации, сильно сдвигающий потенциал в положительную сторону. [c.55]

    Из многочисленных способов защиты, пожалуй, наиболее важны методы, повышающие торможение анодного процесса или, другими словами, методы, способствующие поддержанию коррозионных систем в устойчивом пассивном состоянии. К этим методам защиты относятся создание большинства коррозионноустойчивых сплавов, как, например, нержавеющих сталей, применение широкого класса анодных ингибиторов и пассиваторов (как в виде добавок в коррозионные среды, так и в защитные полимерные пленки, или смазки). В последнее время методы защиты путем анодного торможения коррозионного процесса дополнились принципиально новыми предложениями катодным легированием сплавов и применением анодной поляризации внешним током или использованием катодных протекторов. Открытие этих методов было логическим следствием большого числа глубоко продуманных систематических исследований в области кинетики электрохимических процессов коррозии. [c.10]


    Исследование зависимости скорости растворения стали от потенциала двумя независимыми методами — внешней анодной поляризацией и внутренней с помощью ингибиторов (рис. 2,20) по- [c.60]

    Этот метод правильнее было бы, очевидно, назвать методом внутренней анодной поляризации, поскольку и при внешней анодной поляризации пассивация возникает в результате химической реакции, развивающейся на поверхности металла. [c.43]

    Метод химической пассивации позволяет получать для металлов, склонных переходить в пассивное состояние, такие же поляризационные диаграммы, которые получаются при внешней анодной поляризации. Эти диаграммы имеют участки, характерные для активного растворения, активно-пассивного состояния и пассивного состояния. На рис. 2,18 представлены кривые зависимости скорости коррозии стали от потенциала, который задавался электроду с помощью различных концентраций едкого натра, силиката, фосфата и пербората натрия. Как видно, закономерность получается такая же, как и при внешней анодной поляризации. В начале диаграммы имеется активная область растворения, в которой смещение потенциала в положительную сторону приводит к увеличению скорости растворения. После достижения определенного потенциала, который назовем потенциалом частичной пассивации, скорость растворения начинает падать. Полная пассивация наступает в присутствии этих ингибиторов практически при одинаковых значениях потенциала (- -0,2ч-+0,25 В). [c.55]

    Потенциостат применяют для изучения анодной защиты. Анализ пассивного поведения стал возможным в результате применения метода потенциостатических кривых анодной поляризации, которые позволяют определить условия, необходимые для поддержания металла в стабильно пассивном состоянии путем или обеспечения подходящей среды введением в металл соответствующих катодных легирующих элементов [100, 101], или в результате установления необходимого потенциала с помощью внешней анодной поляризации [27, 29, 106]. [c.612]

    Анодная электрохимическая защита металлов от коррозии— сравнительно новый и очень специфический метод. Он основан на переходе металла из активного состояния в пассивное вследствие смещения его потенциала при анодной поляризации от внешнего источника тока. [c.69]

    Так как потенциал коррозии метала в обычных средах является компромиссным потенциалом (суммарный анодный ток равен суммарному катодному току), то па потенциостатическую кривую, полученную методом внешней поляризации, оказывает влияние характер локальной катодной кривой (анализ и интерпретация кривых проведены Эделяну [27] и Мюллером [28]). По этой причине остаток кислорода в растворе, в котором происходит испытание, может вызывать отклонение от обычного хода кривой в виде образования отрицательной петли В, соответствующей катодному восстановлению растворенного кислорода, которое имеет место после критической точки пассивности. Обычная пассивная область и низкое значение положительного тока возобновляются только при потенциале срс, > как показано на рис. 10.36. Другие ионы могут также влиять на ток. Если они — окислители, они будут оказывать тот же самый эффект, что и растворенный кислород. Однако некоторые из них могут увеличивать наблюдаемый ток до значений, намного превышающих действительный коррозионный ток системы. Поляризационная кривая, полученная на титане [29], показывает уровни тока в пассивной области, которые не согласуются с более низкими скоростями коррозии, определенными гравиметрически, по концентрации ионов Т1 + в растворе. В случае присутствия железа в нейтральной воде [30] плотность тока в пассивной области про- [c.605]

    В свете рассмотренных выще закономерностей нам хотелось бы обратить внимание на то, что, если только не наблюдается вторичного осаждения ионов более благородного металла на менее благородном, нет какого-либо специфического влияния контактов, как это иногда ошибочно думают. Единственное влияние, которое оказывает тот или иной контакт, это смещение потенциала в ту или другую сторону. Оно и вызывает изменение коррозии. Поэтому поляризация внешним анодным током приводит к такому же эффекту, как и присоединение более благородного металла. Контактную коррозию удобнее изучать не на парах, а методом внешней поляризации, позволяющим сразу получать данные об ожидаемом эффекте при присоединении катодов, обладающих самыми различными потенциалами. [c.38]

    Метод основан на поляризации погруженных в электролит индикаторного и вспомогательного электродов при наложении линейно увеличивающегося напряжения от внешнего или внутреннего источника. При этом снимаются катодные или анодные поляризационные кривые электровосстановления или электроокисления растворенного анализируемого газа в координатах ток — потенциал. Полярографию на ртутном капельном электроде обычно называют классической полярографией. При снятии поляризационных кривых к раствору добавляется индифферентный электролит. Этот электролит, добавляемый для обеспечения электропроводности раствора и не участвующий в электрохимических реакциях, называется фоном. [c.19]


    Точечная коррозия. Испытания на точечную коррозию проводились по методу, предложенному Акимовым и Кларк. По этому методу определенный участок сварной трубы подвергается анодной поляризации от внешнего источника тока и определяется потенциал образца в зависимости от наложенного напряжения. При усилении анодной поляризации потенциал образца сначала возрастает, пока не наступает пробивание защитной окисной пленки в наиболее слабой точке, после чего начинается резкое снижение потенциала. Величина потенциала, соответствующая максимуму, на кривой потенциал — напряжение принимается за характеристику стойкости к точечной коррозии, так как характеризует появление первого питтинга. Такие кривые были получены для различных участков сварной трубы, на основании этих данных составлена табл. 2. [c.13]

    Анодная поляризация в активных средах. В последние годы для исследования явления пассивности металлов стали широко использовать потенциостатический метод снятия анодных (поляризационных кривых, который заключается в определении плотности внешнего поляризационного тока или скорости коррозии металла при каждом задаваемом постоянном значении потенциала, автоматически поддерживаемом электронным прибором [129]—[133]. Этот метод дает возможность исследовать электрохимические характеристики металла в области перехода из активного состояния в пассивное, и наоборот. При исследовании поляризации металла гальваностатическим методом (поддержание постоянной плотности тока) в этой области. потенциал металла скачкообразно смещается в положительную сторону до потенциала выделения кислорода. Таким образом, исключается возможность изучения поведения металла в переходной области пассивно-активного состояния. Потенциостатическим методом, в частности, удается определить потенциал металла, при котором он начинает переходить из активного состояния в пассивное, и потенциал полного пассивирования. [c.92]

    Анодная защита пока еще не принадлежит к широко применяемым методам защиты металлов от коррозии, так как для большинства металлов при анодной поляризации наряду с подавлением работы микроэлементов на поверхности металла (положительный разностный эффект) металл продолжает анодно растворяться в соответствии с приложенным током. Однако для некоторых металлов и сплавов с ярко выраженной склонностью к пассивности (нержавеющая сталь, железо) в условиях, когда при небольшой плотности анодного тока возможно наступление устойчивого пассивного состояния, анодная поляризация внешним током может вызвать общий защитный эффект. [c.116]

    Так как основное назначение добавки соляной кислоты, перекиси водорода или хромовокислого калия заключается в стимулировании катодного процесса, благодаря чему (поскольку коррозионный процесс идет с катодным контролем) ускоряются анодный процесс и развитие процесса растрескивания, тех же результатов можно добиться (для некоторых целей это более удобно) анодной поляризацией образца от внешнего источника тока, пропуская через образец ток определенной силы. Если явлений пассивности нет, то при данной силе тока размеры анодного растворения металла, обусловленного этим током, для всех образцов будут одинаковыми. В то же время, если образец склонен к коррозионному растрескиванию, то растворение должно концентрироваться в трещинах, а в случае несклонного к растрескиванию образца оно произойдет по всей поверхности. Контактирование образца с медной пластинкой (без применения внешнего источника тока), также вызывает ускорение растрескивания. Оба эти метода были использованы в Кембридже [87]. [c.640]

    При внешней анодной поляризации трудно отделить пассиваци-онные эффекты, возникающие за счет адсорбции кислорода, от пассивационных эффектов, возникающих за счет адсорбции ингибиторов. Объясняется это тем, что упомянутые эффекты не аддитивны чаще всего внешняя анодная поляризация облегчает адсорбцию ингибирующих анионов и делает прочнее их химическую связь с металлом. Поскольку в реальных условиях применения ингибиторов внешней анодной поляризации чаще всего не бывает, результаты, получаемые при внешней анодной поляризации, следует дополнять или перепроверять методами химической пассивации. [c.55]

    Местные изъязвления поверхности нержавеющих сталей, обнаруживаемые под прокладками или в узкой щели при коррозии в морской воде, не приводят к кажущемуся на первый взгляд противоречию со сказанным выше, так как избирательное разрушение металла в щели обусловлено локализованным характером подкисления в ней раствора в результате развития электрохимической неоднородности рассматриваемой системы. Непосредственные измерения pH раствора под прокладками при саморастворении нержавеющей стали в морской воде, а также pH анолита после внешней анодной поляризации стали в узком зазоре, выполненные Улановским и Коровиным [2], показали, что pH раствора в щели достигает значений равных 3,0 и даже 2,3. Столь низкие, экспериментально полученные значения pH раствора в щели еще не следует рассматривать как предельные, так как при принятом методе определения истинные показания для приэлектродного слоя могли быть замаскированы на фоне заметных объемов исходного нейтрального раствора. Независимо от необходимости дальнейшего уточнения теоретически возможного предела подкисления раствора в щели, ограниченного, по-видимому, естественным буферированием продуктами анодного растворения (по достижении равновесия гидролизного типа), в общем виде можно сказать, что более кислотостойкая сталь должна быть и более стойкой к щелевой коррозии в нейтральных средах. [c.28]

    Анодная поляризация электрода от внешнего источника тока до потенциалов, при которых наступает пассивация, применяется для ващиты металлов от коррозии (метод анодной защиты). Анодную защиту осуществляют также, соединяя металл с другим более благород- [c.370]

    Исследование скорости развития трещины в зависимости от уровня нагружения, свойств материала, среды и внешних факторов (поляризации, давления и температуры) [8,50]. При таком подходе данные о закономерностях роста трещин иод воздействием агрессивной среды и механических напряжений представляют в виде зависимостей скорости роста трещин при статическом (ко розионное растрескивание) или- динамическом (коррозионная усталость) нагружении от максимального (амплитудного) коэффициента интенсивности К цикла. При этом данные для построения указанных зависимостей (диаграмм разрушения) получают при испытании стаццаргньм образцов с трещинами, образовавшимися на образцах в процессе периодического (усталостного) нагружения их на воздухе. Подрастание трещины во времени измеряют по изменению электросопротивления образца, оптическим методам по податливости материала и т. п. Испытания проводят при заданной температуре среды, накладывая, по необходимости, на Образец анодную или катодную поляризацию. По полученнь м данным рассчиты- [c.132]

    Очень удобным и эффективным методом пассивации металлов, получившим широкое практическое применение, является введение в агрессивную среду окислителей. В работах Я. М. Колотыр-кина > ° показано, что степень пассивности металла (или скорость его растворения) определяется электродным потенциалом и не зависит от того, поддерживается данное значение потенциала за счет поляризации металла внешним анодным током или за счет одновременно протекающих реакций (например, выделение водорода, восстановление молекулярного кислорода или других веществ).  [c.206]

    Наиболее важными являются методы защиты, направленные на повышение торможения анодного процесса, иначе говоря, методы, способствующие поддержанию коррозионных систем в устойчивом пассивном состоянии. Создание большинства коррозионноустойчивых сплавов, например, нержавеющих сталей, применение широкого класса анодных ингибиторов и пассиваторов (как в виде добавок в коррозионные среды, так и в защитные полимерные пленки или смазки) относятся к этим методам защиты. Защита с применением анодного торможения коррозионного процесса дополнена принципиально новыми методами катодным легированием сплавов [20] и анодной поляризацией внешними токами — анодная защита (С. Эделя-ну, В. М. Новаковский, А. И. Левин, Н. Д. Томашов, Г. П. [c.46]

    В случае использования поляризации от внешнего источника тока этот метод принято называть катодной защитой. Катодную поляризацию за счет соединения с протектором, имеющим более отрицательный потенциал, целесообразно называть катодно-протекторной защитой . Для смещения потенциала от фкоррсп к ф2 металл необходимо поляризовать анодно. При поляризации от внешнего источника тока этот метод называют анодной защитой. Анодную поляризацию за счет соединения с протектором, имеющим более положительный потенциал, целесообразно называть анодно-протекторной защитой .  [c.55]

    Исследование процессов анодного растворения металлов широко применяется в настоящее время как наиболее общий метод для изучения электрохимической коррозии металлов. Методом снятия анодных поляризационных кривых были установлены наиболее важные количественные закономерности процессов анодного растворения и пассивации металлов. В применении к исследованию питтинговой коррозии метод анодной поляризации от внешнего источника тока используется для обнаружения склонности к этому виду разрушения [1—3]. В более поздних работах [4, 5] были применены потенциостатические методы исследования, позволившие выяснить влияние хлор-ионов на процессы пассивации и активации ряда металлов. В частности, установлено, что при анодной поляризации нержавеющих сталей типа 18Сг—в кислых растворах с увеличением концентрации хлор-ионов происходит увеличение плотности тока пассивации и тока растворения в пассивной области, смещение потенциала пассивации к более положительным значениям, а потенциалов питтингообразования к более отрицательным [4—6]. [c.3]

    Ускоренный приближенный электрохимический метод испытания на точечную коррозию состоит в том, что образец стали поляризуют анодно от внешнего источника постоянного тока и одновременно измеряют его электродный потенциал. При достижении некоторого значения потенциала защитная пленка на образце подвергается точечному разрушению, вследствие чего значение электродного потенциала образца практически не меняется с увеличением поляризующего тока. Достигнутое при анодной поляризации постоянное значение по-тенциала называется потенциалом пробивания. Потенциал пробивания может быть использован в качестве количественной характеристики устойчивости пассивного состояния коррозионностойких сталей. [c.161]

    Метод анодной защиты, состоящий в непрерывной анодной поляризации металла от внешнего источника тока. Метод применим при концентрациях Н2504 не менее 78% и не требует введения в кислоту каких-либо добавок. Плотность тока, необходимая для первоначального пассивирования, составляет несколько десятых а дм , а для поддержания пассивного состояния — от нескольких десятых до 2—3 а/ж . Расход электроэнергии — примерно 1 тт на 100 поверхности. Скорость коррозии уменьшается в 6—10 раз. [c.10]

    Применение потенциостатических измерений показывает, что процесс самопасси-вации практически идентичен процессу анодной пассивации металла при наложении внешнего тока [11—15]. Поляризационная кривая схематически показана на рис. 10.35,0. Если такая кривая получена без применения потенциостатического метода, то часть кривой, выражающая активный процесс растворения металла,, скачком переходит в область кривой, выраженной на диаграмме отрезком ОЕ по-кривым АРЕ или АРО. Показанный на диаграмме отрезок кривой СОЕ, определенный при анодной поляризации, не был известен до тех пор, пока не был применен потенциостатический метод. [c.604]

    Наиболее важны среди многочисленных способов защиты те, которые направлены на повышение торможения анодного процесса или, другими словами, способствуют поддержанию коррозионных систем в устойчивом пассивном состоянии. Создание коррозионностойких сплавов, например нержавеющих сталей, применение анодных ингибиторов и нассиваторов (как в виде добавок в коррозионные среды, так и в виде защитных полимерных пленок или смазок) также относятся к этому типу защиты. В последнее время защита анодным торможением коррозионного процесса еще дополнилась принципиально новым методом, катодным легированием сплавов и анодной поляризацией внешним током (анодная защита) или использованием катодных протекторов [10, с. 110]. [c.31]

    Кривые анодной поляризации. Если к железному аноду приложена внешняя э. д. с., то изменение силы тока при снижении потенциала на аноде представляет некоторую интересную, но довольно сложную картину, которая изучалась целым рядом исследователей. Первые исследования в этой области включая и хорошую работу Мюллера, не были вполне удовлетворитель ными, так как электрическая цепь была непригодна для поддержания потен циала на некотором выбранном уровне (V") до тех пор, пока сила тока не уста новится на соответствующем уровне (/). Более современные потенциостати ческие методы дают возможность поддерживать значение V на уровне который не будет изменяться из-за случайных нарушений процесса в ячейке и поэтому кривые зависимости J от V могут быть получены вполне удовлетво рительными. Хотя многие современные потенциостатические методы связаны с использованием электронной аппаратуры, все же можно использовать обычный делитель напряжения при условии, что сопротивление моста достаточно низко. [c.215]

    Для борьбы с электрохимической коррозией мeтaллQв применяют также и специфические электрохимические методы, основанные на том, что защищаемый металл подвергается катодной поляризации. Так, в методах, называемых протекторной защитой., это достигается присоединением к защищаемому, металлу более активного металла протектора), который становится анодом, благодаря чему анодные участки поверхности защищаемого металла полностью или частично превращаются в катодные по отношению к протектору. В других методах, называемых катодной защитой, аналогичный результат достигается присоединением защищаемого металла к отрицательному полюсу внешнего источника постоянного тока. Защитное действие осуществляется благодаря повышению концентрации электронов в поверхностном слое металла, что затрудняет растворение его. [c.460]

    Из рис. 190 видно, что для определения тока саморастворения металла необходимо проводить экстраполяцию тафелевских участков катодной или анодной кривой до пересечения с горизонтальной линией Е=Ес- Чтобы суммарную катодную и анодную кривые разложить на парциальные кривые выделения водорода и ионизации металла, следует прибегнуть к дополнительным измерениям. Например, скорость растворения металла можно определить методом радиоактивных индикаторов или каким-либо аналитическим методом определения ионов металла в растворе. Скорость выделения водорода можно измерить газометрическим методом. Из рис. 190 видно, что при катодной поляризации электрода скорость выделения водорода возрастает, а скорость растворения металла уменьшается. Таким образом, при помощи катодной поляризации можно защитить металл от коррозии. Это явление называется протект-эффектом и широко применяется при защите металлических конструкций. Катодная защита осуществляется или при помощи внешнего источника тока, или [c.359]


Смотреть страницы где упоминается термин Метод внешней анодной поляризации: [c.44]    [c.71]    [c.371]    [c.230]    [c.636]    [c.389]   
Ингибиторы коррозии (1977) -- [ c.55 ]




ПОИСК





Смотрите так же термины и статьи:

Ток анодный



© 2024 chem21.info Реклама на сайте