Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цинк олова

    Кислоты образуют естественную группу веществ, обладающих рядом характерных свойств. Они химически активны, реагируют с такими металлами, как цинк, олово или железо, которые при растворении в кислотах выделяют водород. Кислоты имеют Кислый вкус, вызывают характерные изменения цветов некоторых красите лей и т. д. [c.53]


    С фтором практически не реагируют или реагируют весьма незначительно инертные газы, фториды тяжелых металлов, фторопласты, а также висмут, цинк, олово, свинец, золото и платина. Медь, хром, марганец, никель, алюминий, нержавеющая сталь при отсутствии воды практически стойки в контакте с фтором вследствие образования на их поверхности прочной защитной пленки соответствующего фторида. [c.128]

    Карбоновые кислоты способны корродировать многие металлы и сплавы сталь, свинец, цинк, олово, медь. Наибольшей коррозионной агрессивностью обладают низшие кислоты жирного ряда. С увеличением молекулярного веса кислот коррозионная активность их падает. [c.26]

    На скорость окисления масел в двигателях существенное влияние оказывают металлы, из которых изготовлены детали двигателя сталь, медь, свинец, цинк, олово, алюминий, кадмий, серебро, никель, хром и др. Некоторые из этих металлов оказывают явное каталитическое действие на процесс окисления масел, другие действуют слабо. Сильнейшими катализаторами окисления являются железо и медь, а также их соединения. Глубокому окислению способствуют и продукты первичного окисления компонентов масла. Они тоже могут взаимодействовать с металлами, давая вещества, в свою очередь ускоряющие процессы окисления. Было, например, установлено, что каталитической активностью обладают соли нафтеновых кислот, особенно нафтенаты свинца и меди. [c.14]

    Основные виды цветных металлов, применяемых в машиностроении,— алюминий, медь, цинк, олово, свинец и их сплавы. Заводы цветного литья получают металлы, как правило, в виде слитков (за исключением меди, которая поставляется в виде плоских электролитически очищенных катодов). В зависимости от масштабов производства и размеров слитков используется самая разнообразная техника литья. [c.313]

    Практическое значение имеет применение ртутного катода для отделения большого количества одного или одновременно нескольких металлов, переходящих в амальгаму, от примеси другого металла, остающегося в растворе. Такие элементы, как алюминий, титан, цирконий, фосфор, мышьяк, ванадий и др., не образуют амальгам и остаются при электролизе с ртутным катодом в растворе. Другие металлы, как железо, хром, медь, висмут, серебро, кадмий, молибден, цинк, олово, никель, кобальт и др., легко и количественно осаждаются на ртутном катоде, для электролиза с электролиза применяют различные приборы, [c.202]

    Цинк, олово, свинец и многие другие важные металлы производят в настоящее время преимущественно электролитическим путем. [c.118]


    Прецизионные данные по дифференциальной емкости, полученные вначале на ртутном электроде, а затем на ряде других металлов (галлий, свинец, висмут, кадмий, сурьма, индий, цинк, олово, серебро и др.), послужили экспериментальной основой современной теории двойного электрического слоя. Для объяснения качественных закономерностей можно воспользоваться формулой плоского конденсатора (12.6), которая справедлива прежде всего для интегральной емкости. На рис. 31, а представлены кривые интегральной емкости для раствора поверхностно-неактивного электролита NaF. Ионы F" подходят к поверхности ближе, чем ионы Na+, поэтому в области адсорбции анионов емкость выше, чем при дС.О. В разбавленном растворе NaF вблизи п. н. з. среднее расстояние ионов до поверхности значительно возрастает, поскольку в этих условиях ионная обкладка двойного слоя наиболее сильно размывается тепловым движением. Поэтому здесь на К, -кривой наблюдается минимум. Слагаемое в уравнении (12.23), пропорциональное dK/dE, делает зависимость С от Е более сложной (рис. 31, б). [c.56]

    Металлургию делят на ч е р н у ю (получение железа и его сплавов) и цветную (получение цветных металлов). Цветная металлургия занимается получением легких (алюминий, магний, титан, щелочные металлы), тяжелых (медь, свинец, цинк, олово) и благородных (золото, серебро, платиновая группа) металлов. Современная металлургия получает более 75 металлов и много- [c.142]

    Когда несколько металлов находятся в соприкосновении друг с другом и погружены в один и тот же раствор, то первым будет растворяться (корродировать) тот металл, который расположен ближе к началу ряда напряжений, или, что то же, тот у которого. .. (меньшая, большая) положительная величина электродного потенциала или. .. отрицательная. Железо, медь, цинк, олово и свинец —все находится в соприкосновении друг с другом и погружено в 1 н. раствор соляной кислоты. Определите последовательность растворения металлов. [c.124]

    В промышленности металлы получают восстановлением соответствующих руд. Железо и сплавы на его основе традиционно называют черными металлами. Медь, цинк, олово, свинец и некоторые другие относятся к цветным металлам. [c.142]

    Металлургию подразделяют на черную (железа и его сплавов) и цветную (цветных металлов). Цветные металлы в соответствии с их свойствами делят на легкие, тяжелые, благородные, редкие и др, К легким металлам относят титан, алюминий, магний, щелочноземельные и щелочные металлы к тяжелым — медь, свинец, никель, цинк, олово к благородным — золото, серебро, металлы платиновой группы. [c.165]

    Защитные поверхностные покрытия металлов. Такие покрытия изолируют металл от внешней среды и могут быть как металлические (цинк, олово, свинец, никель, хром и другие металлы), так и неметаллические (лаки, краски, эмали и другие вещества). [c.253]

    Восстановление Sb (III). Металлы, стоящие в ряду напряжений левее сурьмы Eg системы Sb VSb" равен 1,0 б), например, магний, алюминий, железо, цинк, олово, вытесняют ее из солей в кислом растворе  [c.199]

    Какой из металлов в паре олово — цинк, олово — железо будет разрушаться  [c.191]

    В кислой среде восстановление идет через образование нескольких промежуточных веществ. В качестве восстановителя применяют водород, который образуется при взаимодействии металлов (цинк, олово, железо и др.) с соляной кислотой. Конечным продуктом восстановления является анилин  [c.266]

    Гидроксиды щелочных металлов проявляют все характерные свойства оснований они взаимодействуют С кислотными и амфотерными оксидами, амфотерными гидроксидами, кислотами, солями. В водных растворах щелочей растворяются некоторые металлы, образующие амфотерные гидроксиды (бериллий, алюминий, цинк, олово и др.), например  [c.247]

    Ртуть растворяет многие металлы (цинк, олово, натрий, медь, золото), образуя жидкие и твердые сплавы — амальгамы. [c.255]

    Цинк, олово, никель, алюминий добавляют в медь обычно в небольших количествах. Эти элементы полностью растворяются в меди, не ухудшая при этом ее механических свойств. [c.145]

    Важной характеристикой материала катода является перенапряжение выделения водорода. В зависимости от его величины катодные материалы можно разделить на три группы с высоким перенапряжением (ртуть, свинец, цинк, олово, кадмий)  [c.16]

    Некоторые металлы способны к взаимодействию с реактивами Гриньяра это цинк, олово, кремний, кадмий, медь и ртуть. [c.241]

    Для проведения процессов электровосстановления при высоких отрицательных потенциалах применяют такие материалы, как ртуть, цинк, олово, свинец, обладающие высоким перенапряжением для выделения водорода. Большое влияние на ход электрохимического синтеза оказывает состояние поверхности электрода. Проведение процессов при высоких потенциалах возможно на гладких электродах, так как для этих случаев электроды с губчатой ловерхностью будут приводить к снижению перенапряжения газов и отрицательно влиять на выход по току. Когда для проведения процессов требуется большая концентрация атомарного газа, взаимодействующего с реагентом, то применяют электроды с развитой поверхностью. [c.137]


    Для исследования состава алюминиевых сплавов применяют часто еще следующий способ разложения и анализа. 0,1—0,2 г алюминиевых стружек или опилок помещают в коническую колбу и прибавляют небольшими порциями 25%-ный раствор едкого натра. Ввиду того что реакция растворения протекает очень бурно, следует иметь наготове сосуд с холодной водой для охлаждения содержимого колбы с целью замедлить реакцию. После прекращения реакции дают раствору постоять 3—5 мин., затем разбавляют вдвое водой и кипятят. Осадок, содержащий соединения меди, железа, никеля, марганца, магния и кальция, отфильтровывают от раствора, в котором находятся алюминий, цинк, олово и большая часть кремневой кислоты. Затем в осадке и растворе определяют вышеперечисленные элементы. [c.132]

    Применение электролиза расплавов и растворов огромно. Такие ценные металлы, как алюминий, натрий, цинк, олово, свинец, кадмий, серебро, золото, получают исключительно путем электролиза. В производстве никеля, магния, меди, белой жести электрохимическая продукция [c.190]

    Занятие 19. Лаб.работа "Элементы семества железа"."Цинк, олово, свинец [c.182]

    Оаюв№ тяжвлые медь, свинец, никель, цинк, олово Малые тяже/ше висмут, мышьяк, сурьма, ртуть, кадмий, ко шьт Лепале алюминий, магний, титан, натрий, калий, барий, кальций, стронций [c.5]

    Штегер и Боненблюст [311 обстоятельно изучили каталитическое воздействие металлов на окисление трансформаторных масел. Авторы пришли к выводу, что металлы по активности располагаются следующим образом медь и латунь — наиболее эффективные катализаторы, никель, железо, цинк, олово и алюминий оказывают меньшее действие. [c.284]

    Карбоновые кислоты, содержапгиеся в бензинах, особенно низкомолекулярные (муравьиновая, уксусная, пропионовая), способны корродировать многие металлы сталь, свинец, цинк, олово, медь и др. Поэтому для предотвращения коррозионного воздействия на материалы резервуаров, топливных баков и топливных систем содержание карбоновых кислот в товарных бензинах ограничено. Действующими отечественными стандартами и техническими условиями содержание кислых кислородсодержащих продуктов контролируется величиной кис ютности бензина, которая не должна превышать 3 мг КОН на 100 см  [c.78]

    В пятидесятых годах XIX века ученик Бунзена Эдуард Фран-кланд получил цинк-, олово-, ртутьсодержащие органические (т.е. металлоорганические) соединения. Кстати, Франк1инд - один из создателей теории типов химических соедашений, впервые ввел понятие валентности. [c.191]

    В лаборатории института Гипроникель разработан способ электролитического получения никеля чистоты 99,9999% с применением нерастворимого анода. Из раствора N 012, приготовленного растворением карбонильно го никеля, удаляют примеси железа, кобальта, меди и других более электроположительных металлов с помощью электролитической очистки. Окончательную очистку от меди производят дитизоном, а доочистку от железа — купфероном. Экстрактором служат чистые ССЦ или С2Н5О. Электролиз ведут в растворе 150 г/л N1 в виде ЫЮЬ при температуре 70°, п ютности тока 1300 а/м . Катодом служит титан, анодом — чистейший графит. Полученный осадок нагревают в течение нескольких часов в вакууме при 1400°, при этом никель теряет водород, кислород, углерод, а также цинк, олово, кадмий, оставшиеся после электролитической очистки. [c.585]

    На долю восьми элементов (О, 81, А1, N3, Ре, Са, Mg и К) приходится 99% от массы земной коры, и лишь 1% остается на долю всех остальных (81) элементов. Однако содержание элементов на Земле еще не определяет их распространенность в сфере человеческой деятельности. Поэтому, пользуясь жизненным опытом, мы часто допускаем ошибку в оценке распространенности того или иного элемента. Казалось бы, например, что по сравнению с титаном таких давно известных элементов, как медь, цинк, олово и свинец, в земной коре должно быть гораздо больше. В действительности их суммарное содержание в сотни раз меньше содержания титана. Подобное расхождение кажущейся распространенности с действительной объясняется, с одной стороны, трудностью выделения некоторых высококларковых элементов из-за образования ими прочных соединений или их распыленности и, с другой стороны, способностью некоторых низкокларковых элементов накапливаться на небольших участках. Если малораспространенный элемент концентрируется в каком-то месте, то это приводит к образованию залежей его минералов, пригодных для промышленной разработки. Так, сульфидов тяжелых металлов (типа РЬ8) в виде минералов существует столько же, [c.267]

    В качестве восстановителей чаще всего применяют металлы цинк, олово, железо, амальгаму натрия или цинка — в щелочной или в кислой среде. Восстановление можно также вести алюмогидридом лития (см. 15.2) или водородом над никелем Ренея и другими катализаторами. Так, практически важные для синтеза триарилметановых красителей бензгидрол и его производные получают из соответствующих кетонов при действии цинковой пыли в щелочном или аммиачном растворе, к которому для повышения растворимости продукта добавляют спирт. Цинк применяют в значительном избытке против количества, рассчитанного по уравнению  [c.298]

    Некоторые металлы и неметаллы (Sn, Zn, Al, Si и др.) растворяются в щелочах, Поэтому при анализе некоторые сплавы (например, алюминиевые) растворяют в 25%-ном растворе NaOH. В раствор переходят алюминий, цинк, олово, кремний в осадке остаются железо, магний, марганец, медь и другие нерастворимые в щелочах компоненты исследуемых сплавов. [c.439]

    Алюминий. Промышленность уже много лет производит алюминиевые протекторы, однако лишь в последние годы они начали широко применяться для защиты конструкций в морской воде. Первым алюминиевым сплавом для этих целей был A13Zn (3 % Zn). Современные протекторы изготавливают из тройных сплавов алюминий—цинк—олово и алюминий—цинк—ртуть. Характеристики алюминиевых протекторов приведены в табл. 70. [c.173]

    В наших исследованиях [226] были использованы различные восстановители—магний, железо, цинк, олово в кислой среде, гипосульфит натрия, гидразингидрат в присутствии никеля Ренея. Хлористое железо н хлористое олоно оказались наиболее удобными. При нх использовании удалось получить конечные продукты реакции в наиболее чистом виде и с хорошим выходом. Образование хлорзамещенных продуктов, которые довольно часто получаются при восстановлении нитросоединений [c.87]

    При изучении действия воды на стекло Вигель [227] обнаружил, что оно оказывалось более стойким по отношению к действию воды, чем к действию солевого раствора. Кроме того, после экстрагирования щелочи из стекла кислотой оно становилось более стойким по отношению к воздействию воды, что, несомненно, было вызвано отсутствием заметных количеств растворимого электролита, способного накапливаться в воде. Наконец, автор нашел, что медь, цинк, олово и алюминий понижали количество щелочи, удаляемой водой из стекла, тогда как никель, кобальт и магний, наоборот, его повышали. [c.105]


Смотреть страницы где упоминается термин Цинк олова: [c.505]    [c.105]    [c.113]    [c.8]    [c.191]    [c.321]    [c.202]    [c.16]    [c.72]    [c.66]   
Химико-технические методы исследования (0) -- [ c.586 ]




ПОИСК





Смотрите так же термины и статьи:

Амальгамы цинка, кадмия, олова, свинца и висмута (жидкие) . Сплавы калия с натрием (жидкие)

Бериллий абсолютная чувствительность вольфрама, калия, молибдена, олова, хрома, цинка

Изделия из олова, цинка и их сплавов

Лайнер. Покрытия сплавами олово—цинк и олово—кадмий

Молибден, определение примеси висмута, кадмия, меди, никеля, олова, свинца, сурьмы, титана, хрома цинка

Никель, абсолютная чувствительность меди, олова, свинца, цинка

Олеиновая кислота, действие на железо и сталь индий никель олово сплавы меди с цинком

Олово алюминием и цинком

Олово, абсолютная чувствительность цинке

Определение кадмия, мышьяка, кремния, железа, цинка, свинца, ртути и олова в индии

Определение меди, свинца, цинка, никкеля, железа (олова)

Определение примесей олова в металлических титане, кобальте, меди, кадмии, цинке и цинковом электролите

Определение цинка, кадмия, алюминия, висмута, кобальта, марганца, олова, свинца, меди, магния, кремния, железа, мышьяка и сурьмы спектральным методом

Опыт 3. Вытеснение олова из раствора его соли цинком

Осаждение сплава олово — цинк

Осаждение цинка, кадмия, олова, свинца и их сплавов

Пассивирование цинка, кадмия, олова, меди, их сплавов и серебра

Полярографическое определение меди, свинца, висмута, цинка, индия и галлия в олове амальгамным способом с накоплением

Полярографическое определение свинца, олова, висмута, сурьмы, галлия, кадмия и цинка в алюминии амальгамным способом с накоплением

Полярографическое определение цинка, свинца и меди в олове амальгамным способом с накоплением

Припои на основе олова, цинка и кадмия

Радиоактивационное определение марганца, железа, меди, цинка, галлия, олова, мышьяка, серебра, кадмия и золота в алюминии

Свинец, олово, цинк, кадмий

Синтез германийорганических соединений с помощью металлоорганических соединений лития, натрия, цинка, ртути, алюминия, олова и свинца

Смолы эпоксидные отвердители медь алкоголяты олово алкоголяты титан алкоголяты фенолят цинк алкоголяты

Соединения ртути, меди, цинка, олова и других металлов

Спектральное определение алюминия, бора, висмута, галлия, железа, индия, кобальта, кремния, марганца, меди, мышьяка, никеля, олова, свинца, серебра и цинка в сурьме

Спектральное определение серебра, висмута, цинка, таллия, никеля, свинца и олова в кадмии

Спектральное определение серебра, меди, висмута, олова, свинца, сурьмы, никеля, кобальта и галлия в цинке

Спектральное определение таллия, висмута, олова, цинка, сурьмы, никеля, кобальта, меди, свинца и серебра в кадмии

Сплав олово — цинк

Сплавы медь — марганец, медь — висмут, медь — сурьма, медь — индий, медь — цинк — олово, медь — цинк — никель

Сплавы на основе меди, цинка и олова

Сплавы свинец — олово — цинк

Травление цинка, олова, свинца и их сплавов

Фосфор цинка, олова, титана или циркония

Фотометрическое определение кальция в алюминии, свинце, цинке и олове

Химико-спектральное определение алюминия, висмута, галлия, железа, золота, индия, кальция, магния, марганца, меди, никеля, свинца, сурьмы, олова, серебра, таллия, тантала, титана, хрома и цинка в германии, двуокиси германия и тетрахлориде германия

Химико-спектральное определение алюминия, висмута, цинка, магния, марганца, никеля, свинца, серебра, сурьмы, галлия, олова, хрома и меди в двуокиси кремния с применением полого катода

Химико-спектральное определение серебра, алюминия, магния, индия, молибдена, циркония, железа, титана, меди, марганца, никеля, свинца, хрома, олова, висмута, галлия, кальция, цинка и сурьмы в трихлорсилане без применения гидролиза

Цинк абсолютная примеси висмута, меди, олова

Цинк в олове металлическом

Шварц. Современное состояние методов определения примесей в олове и цинке

восстановление олова от цинка

меди II натрия едкий натр олова II платины II родия II свинца II серебра II стронция II талия II хрома II цинка II перекисей бария I II кадмия II цинка II

меди с оловом меди с цинком

медь оксихинолинат олово-глюконат и хелаты титан алкоголяты феноляты хелаты цинк оксихинолинат

никель олово сплавы меди с цинком

олово хелаты титан феноляты, хелаты цирконий алкоголяты и хелаты насекомые, защита цинк фенилгалогенид

свинец хелаты цинк оксихинолинат противостарители олово винилгалогениды

серебро сплавы меди с оловом цинк

цинк нафтил линейный высокоплавкий алюминий алкилы олово алкилы арилы

цинк олово сплавы железа с никелем сплавы меди

цинк оловом сплавы никеля



© 2024 chem21.info Реклама на сайте