Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

никель олово сплавы меди с цинком

    В практических условиях большее значение имеет взаимодействие компонентов при совместном разряде ионов металлов, образующих сплавы типа твердых растворов или химических соединений. В данном случае облегчение процесса, обусловленное уменьшением парциальной мольной энергии образования (ДФ) компонентов, сохраняется в течение всего процесса электролиза. Примером является электроосаждение сплавов олово — никель, олово — сурьма, медь — цинк, медь — олово и др. [c.434]


    Если величина аФ больше для компонента с более отрицательным потенциалом, потенциалы выделения металлов на катоде сближаются. Примером взаимодействия компонентов при образовании сплава являются олово — никель, олово — сурьма медь — цинк и медь — олово. Учитывая смещение равновесного потенциала в сторону положительных значений при образовании сплава типа твердого раствора или химического соединения и изменение перенапряжения при восстановлении ионов на поверхности осаждающегося сплава, уравнение (8) можно написать, в следующем виде  [c.255]

    Эффект деполяризации проявляется в результате взаимодействия компонентов сплава при образовании кристаллической решетки твердого раствора или химического соединения. В этом случае облегчение процесса образования сплава объясняется уменьшением парциальной молярной свободной энергии металлов. Такое влияние отмечается при электроосаждении сплавов олово — никель, олово — сурьма медь — цинк, медь — олово и др. [c.49]

    В промышленности нашли широкое применение гальванические покрытия цинком, кадмием, оловом, свинцом, никелем, медью, хромом, золотом, серебром, а также сплавами медь—цинк, медь—олово и др. [c.339]

    Разность равновесных потенциалов цинка и кадмия как в кислых, так и в цианистых растворах при одинаковой концентрации цинка и кадмия составляет около 0,3 в (константы нестойкости цианистых кадмиевых и цинковых ионов близки между собой),, между тем сплав цинк—кадмий в цианистом растворе осаждается, а в кислом не осаждается (при плотности тока ниже предельной). Соосаждение кадмия и цинка в цианистом растворе обусловлено более высокой поляризацией кадмия, чем цинка. Возможность осаждения сплавов медь—никель [168] и медь—цинк, из пирофосфатных растворов [149], сплава олово—цинк из станнатного раствора [158] также обусловлена высокой поляризацией при разряде из комплексного иона более благородного компонента. Поэтому при выборе комплексообразователей для осаждения сплава необходимо принимать во внимание не только константу нестойкости, но и значение поляризации при выделении из данных комплексных ионов, т. е. предварительно строить поляризационные кривые. [c.41]

    Латунями называются сплавы медь — цинк, к которым могут быть добавлены и другие элементы. В обозначении марок латуней первая буква Л обозначает латунь . Наличие в сплаве других элементов, кроме меди и цинка, обозначается следующими буквами А — алюминий, Ж — железо, Мц — марганец, К—кремний, С—свинец. О—олово, Н—никель. Стоящие за буквами цифры обозначают среднее содержание элементов, причем первое двузначное число показывает процент меди, последующая цифра — содержание в процентах других элементов в порядке расположения цифр. Остальное до 100% — цинк. Буква Л в конце обозначения марки после цифр указывает, что латунь литейная,, т. е. предназначена для изготовления отливок и не может быть [c.34]


    Гальванические покрытия получают путем осаждения при помощи тока на поверхности деталей слоя металла из электролитов, содержащих ионы данного металла. Широко применяются гальванические покрытия цинком, медью, никелем, хромом, оловом, кадмием, свинцом, серебром, а также сплавами медь— цинк, медь—олово, свинец—олово, олово—никель и т. п. [c.4]

    Аноды имеют решающее значение для показателей процесса рафинирования. Рафинировать можно медь любого состава черновую, конверторную, после огневого рафинирования (табл. У1П-1), сплавы меди с никелем, цинком, кобальтом, оловом и другими металлами, а также штейны с меньшим и большим содержанием серы, однако показатели процесса будут различными. Б тех случаях, когда пирометаллургическое рафинирование неэкономично (например, при отсутствии соответствующего топлива), электролитическому рафинированию подвергают медь, из которой неполностью удалены такие примеси, как цинк, железо, свинец, олово и висмут, а также кислород и сера. На какой стадии пирометаллургического процесса медь будет в достаточной мере очищена — в конверторах или только при огневом рафинировании в отражательных печах — определяется уровнем данного производства. [c.312]

    Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, например, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др. медные сплавы — олово, цинк, СБ1 н ц, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.453]

    Ест расположить металлы и сплавы, находящиеся в электролите (кислоты, растворы солей, морская вода, влажный грунт и др.). в электрохимический ряд напряжений, начиная от анодного, менее благородного (корродирующего), в направлении к катодному, более благородному (защищенному), то они образуют следующий ряд магний, цинк, алюминий, кадмий, железо и углеродистая сталь, чугун, легированные стали (активные), свинец, олово, латунь, медь, бронза, титан, никель, легированные стали (пассивные), серебро, золото. При помощи этого ряда можно предсказать, какой из двух металлов при их контакте в электролите станет анодом, а какой -катодом. [c.39]

    При затруднениях в определении скорости коррозии рекомендуется пользоваться распределением металлов по группам, в пределах которых контакт может считаться допустимым. Для атмосферных условий эксплуатации можно выделить пять таких групп I — магний П — алюминий, цинк, кадмий П1 — железо, углеродистые стали, свинец, олово IV — никель, хром, коррозионностойкие стали (в пассивном состоянии) типа Х17 и 18—8 V — медно-никелевые и медноцинковые сплавы, медь, серебро, золото. [c.74]

    Изобретенный в начале столетия способ металлизации обрызгиванием жидким металлом и сегодня успешно применяют для металлизации пластмасс и тканей. Алюминий, цинк, свинец, медь, никель, олово, а также различные их сплавы расплавляют в пламени газовой горелки, в электрической дуге или в потоке плазмы и сжатым воздухом или га-3014 разбрызгивают на покрываемую поверхность. Частицы жидкого металла величиной около 60 мкм по пути к поверхности охлаждаются до 200—800 °С и вследствие кратковременности действия н дальнейшего быстрого охлаждения лишь оплавляют поверхность, прилипая к ней. При металлизации обрызгиванием обычно получают шероховатые и относительно толстые покрытия — 10—1000 мкм. Конечно, такие покрытия не во всех случаях пригодны. Этим способом удобно металлизировать большие плоские [c.13]

    Черные металлы — чугун и сталь, занимая исключительно важное место в промышленности и технике, часто служат объектом анализа. Число элементов, которое может находиться в железных сплавах, очень велико, чем и определяется большое разнообразие их физико-механических и химических свойств. Наряду с давно применяемыми легирующими элементами (такими, как хром, никель, кобальт, ванадий, вольфрам), в практику черной металлургии и в последние десятилетия вошли новые компоненты (например, редкоземельные, цирконий, гафний, титан, тантал, ниобий), добавки которых позволяют получать черные металлы с еще более ценными качествами. Кроме того, растет внимание и к ряду элементов, присутствие которых даже в малых количествах, может существенно изменять качество металла. Сюда относятся мышьяк, медь, олово, сурьма, алюминий, цинк и др. Содержание этих компонентов также контролируется, особенно в высококачественных сталях. [c.473]

    Помимо специально приготовленных катодов из чистых металлов, хорошие результаты дали также сплавы. Сетки или пластинки можно получить из монель-металла и фосфористой бронзы [25, 26]. Амальгамированный никель 127] и амальгамированный цинк 28] одного из типов готовили, оставляя металлы в растворах хлорной ртути. Для приготовления амальгамированного свинца было применено два метода, а именно втирание ртути в пластинку свинца [29] и выдерживание свинцовой пластинки в растворе хлорной ртути 130]. Сплавы, так же как и чистые металлы, приготовляли, кроме того, электроосаждением. Медную сетку лудили [31], толщина полуды в работе не указана. Олово можно электролитически осадить на меди из раствора сульфата двухвалентного олова [32]. Цинковую амальгаму можно приготовить электроосаждением цинка на ртутном катоде из раствора сульфата цинка до получения твердой амальгамы [33]. [c.321]


    Электролиз при регулируемом потенциале считается также лучшим методом удаления мешающих элементов из образцов перед анализом их методами спектрофотометрии, полярографии и др. Описанные выше электрогравиметрический и кулонометрический методы как раз и могут быть использованы для этих целей. В таких случаях сначала проводят электролиз для разделения элементов, а затем в оставшемся растворе определяют нужный металл. Приведем пример. Лингейн анализировал методом электролиза при регулируемом потенциале различные сплавы меди, применяя ртутный катод. Из солянокислых растворов медь выделялась вместе с сурьмой и висмутом. В оставшемся растворе автор полярографически определял свинец и олово, после чего осаждал эти элементы электролизом при более отрицательном значении потенциала. Наконец, после этого вторичного электролиза в оставшемся растворе были определены никель и цинк. Лингейн з приводит также и другие примеры избирательного осаждения с использованием ртутного катода. [c.355]

    В бронзе, других сплавах и рудах иодометрическому определению могут мешать некоторые сопутствующие меди элементы. Медные сплавы содержат цинк, свинец и олово, а также малые количества железа и никеля, в то же время в медьсодержащих рудах часто встречаются железо, мышьяк и сурьма. [c.342]

    Жидкий фтор является одним из наиболее реакционноспособных химических элементов. Медленно реагируют с фтором или совсем не реагируют инертные газы, фториды металлов, фторопласты и металлы висмут, золото, платина, олово и цинк. Медь, хром, марганец, никель, легированная сталь и алюминий в отсутствие воды практически стойки при контакте с фтором в результате образования на их поверхности заш итной пленки фторидов. При повышенных температурах удовлетворительной стойкостью обладают никель, го сплавы и легированные стали. Жидкий фтор хранят в резервуарах из алюминия или легированных сталей. Еще более энергично, чем азотная кислота, фтор разрушает большинство неметаллических материалов. Пластмассы в контакте с фтором воспламеняются. Жидкий и газообразный фтор не оказывает коррозионного воздействия на некоторые керамические материалы. [c.234]

    Как показывают длительные испытания, в морской агрессивной атмосфере легирование меди алюминием, цинком, никелем и оловом повышало их сопротивляемость коррозии и поэтому алюминиевые бронзы, томпак, сплавы меди с никелем и цинком, сплавы с никелем и оловом оказываются более стойкими, чем чистая медь. Алюминий оказывает благотворное влияние также в субтропической морской и в сельской атмосферах. Алюминиевые бронзы в этих условиях обнаружили более высокую стойкость. В других атмосферах, и в особенности в промышленных, легирование меди положительных эффектов не давало. Более того, оно часто приводило к понижению стойкости основного компонента сплава. Высокопрочные латуни, содержащие, кроме меди, цинк (20—24%), марганец (2,5—5,0%), алюминий (3—7%) и железо (2—4%), оказались во много раз менее стойкими по сравнению с чистой медью более подробно о коррозионных свойствах различных медных сплавов см. в гл. V). [c.253]

    В морских атмосферах обнаружили исключительно высокую противокоррозионную стойкость алюминиевая бронза (Р), морская латунь (А/) и сплавы медь — никель — цинк (Р) и медь — никель -— олово (<2), т. е. как раз те из них, которые отличаются высокой стойкостью в морской воде. [c.296]

    МЕДИ СПЛАВЫ — сплавы на ото ве меди. В виде бронзы применялись за 3000 лет до н. э. В жидком состоянии медь сплавляется со многими элементами, с большинством из них — в любом соотношении. Лишь вольфрам, молибден, осмий, рутений и тантал практически не сплавляются с нер. В твердом состоянии макс. растворимость элементов (в альфа-твердом растворе меди) изменяется в очень широких пределах от сотых и десятых долей процента (хром, ниобий, свинец, ванадий, цирконий) до процентов (серебро, алюминий, мышьяк, бериллий, кадмий, кобальт, железо, магний, кремний, титан и др.) и десятков процентов (индий, олово, цинк). Неограниченно растворяются никель, золото, марганец, палладий и платина. Однако с золотом, марганцем, палладием и платиной М. с. в твердом состоянии претерпевают превращения. С увеличением концентрации легирующего элемента в альфа-твердом растворе меди повышается мех. прочность сплавов их теплопроводность и электропроводность уменьшаются (менее всего при легировании серебром). К вредным примесям относятся висмут, сурьма, свинец и углерод (в медноникелевых сплавах), к-рые приводят к хрупкости. Стойкость против коррозии М. с. зависит от природы легирующего элемента и окружающей среды. Повышают стойкость никель, олово и алюминий. С понижением т-ры раст  [c.780]

    Значительное количество цинка идет на цинкование железа и сплавов на его основе в целях предохранения их от коррозии. Цинк используется для получения сплавов с медью (латуни), с медью и оловом (бронзы), с никелем (мельхиор), с медью и никелем (нейзильбер), а также для изготовления подшипниковых сплавов (типа ЦАМ). [c.131]

    Главнейшие цветные металлы—это медь, цинк, алюминий, никель, олово, свинец. Цветные металлы в большинстве случаев применяют в виде сплавов. Это объясняется тем, что сплавам, изменяя качество и количество составных частей, можно придать такие свойства, которыми не обладает чистый металл. Наиболее широко применяют сплавы меди, алюминия, магния, никеля и др [c.320]

    ЭКОНОМИЧНЫМ и совершенным, позволяюш,им наносить более равномерные по толш ине и более высокой химической чистоты покрытия любым металлом, чем при других перечисленных способах. В промышленности нашли широкое применение гальванопокрытия цинком, кадмием, оловом, свинцом, никелем, медью, хромом, серебром, золотом, а также сплавами медь-цинк, медь-олово и др. [c.171]

    Как известно, например, из наблюдений Смита [501], Блейзи [502] и, в частности, Фрёлиха [466], на меди при легировании ее такими менее благородными элементами, как кремний, висмут, мышьяк, марганец, никель, олово, титан и цинк, под самой окалиной образуется обогащенный медью слой (содержащий кислород в растворе), в котором распределены маленькие частицы окислов легирующих элементов. Смит [501] назвал такой слой нодокаЛИНОЙ , а само зто явление известно под названием внутреннего окисления . Райне [503] обстоятельно исследовал процесс образования подокалины на меди, легированной различными элементами, в интервале а-твердого раствора при температурах 600° С (192 ч) и 1000° С (2 ч). Он показал, что все сплавы, содержащие электроотрицательные по сравнению с медью элементы, в той или иной мере подвержены внутреннему окислению. Томас [459] исследовал внутреннее окисление меди в ее сплавах с пал- [c.193]

    Из др>п[. покрытий сплавами меди известны составы э-тектролитов для осаждения покрытий медь — свинец, медь — кадмий, медь — никель, медь — никель — цинк, медь — олово— цннк, применяемые как для защитно-декоративной отделки, так н для специальных целей. [c.103]

    Титан губчатый. Технические условия Титан и сплавы титановые деформируемые. Марки Сплавы титановые. Методы определения алюминия Сплавы титановые. Методы определения ванадия Сплавы титановые. Метод определения хрома и ванадия Сплавы титановые. Методы определения вольфрама Сплавы титановые. Методы определения железа Сплавы титановые. Методы определения кремния Сплавы титановые. Методы определения марганца Сплавы титановые. Методы определения молибдена Сплавы титановые. Методы определения ниобия Сплавы титановые. Методы определения олова Сплавы титановые. Метод определения палладия Сплавы титановые. Методы определения хрома Сплавы титановые. Методы определения циркония Сплавы титановые. Методы определения меди Сплав титан-никель. Метод определения титана Сплав титан-никель. Метод определения никеля Титан губчатый. Методы отбора и поготовки проб Титан губчатый. Метод определения фракционного состава Сплавы титановые. Методы спектрального анализа Титан и сплавы титановые. Метод определения водорода Титан и титановые сплавы. Методы определения кислорода Титан губчатый. Метод определения твердости по Бринеллю Свинец, цинк, олово и их сплавы Олово. Технические условия [c.579]

    Наиболее агрессивнЕлми из атмосфер по отношению к медным сплавам оказались промышленные, в них коррозия выше, чем в морской и сельской. Алюминиевьк бронзы (Р), сплавы медь — никель — цинк (Р), а также медь — никель—олово (0, обладающие обычно высокой противокоррозионной стойкостью в морской воде, обнаружили также незначительную коррозию и в промышленно-морской атмосфере. [c.296]

    Примечание. Цинк, свинец, никель, олово и марганец в тех копи-нествах, в которых они находятся в медно-цинковых сплавах, определению алюминия не мешают. Влияние ионов железа устраняют введением в раствор аскорбиновой кислоты, которая восстанавливает ионы Ре + до Fe ", образующих с эриохромцианином бесцветный комплекс влияние ионов меди устраняют добавлением тиосульфата натрия, образзгаощего бесцветный тиосульфатный комплекс. Анализ выполняется за 12—15 мин с ошибкой, не превышающей 3 отн. %. [c.94]

    Медь, цинк, олово, свинец, а также большинство других составляющих, присутствующих в небольших количествах в сплавах цветных металлов, определяют атомно-абсорбционным методом, хотя результаты публикуются довольно редко. Сплавы на основе меди анализировали на содержание цинка [53], свинца [319] и марганца [31]. Саттур [160] определял в таких сплавах марганец, никель и железо, а кроме того медь, присутствующую в качестве основного элемента в различных материалах NBS, и незначительные примеси меди в олове, цинке, алюминии и свинце. Погрешность при определении основного элемента методом атомной абсорбции составляла всего 0,7% от общего количества меди. [c.179]

    К неорганическим покрытиям относят металлические и неметаллические покрытия (конверсионные, стеклоэмалевые и др.). Металлопокрытия по объему применения в эксплуатации несколько уступают лакокрасочным покрытиям (ЛКП). Благодаря развитию электрохимий созданы металлические покрытия, обеспечивающие высокоэффективную долговременную защиту конструкций ма-ший от коррозии. Наиболее часто используют цинковые, кадмиевые, никелевые, медные, хромовые, оловянные, серебряные покрытия, а также покрытия сплавами (олово-свинец, олово-висмут, цинк-медь, цинк-никель и др.). Из неметаллических в технике нашли применение конверсионные покрытия (фосфатные, оксидные, оксидифосфат-ные, хроматные). Основные физико-химические свойства покрытий и их стойкость в различных условиях приведены в табл. 1.2, [c.29]

    И Спекулум [11]), олово — никель [27], олово—свинец [68], олово — цинк и олово — кадмий [69] и тройные сплавы олово — медь-цинк и олово— медь — кадмий [69а.  [c.708]


Смотреть страницы где упоминается термин никель олово сплавы меди с цинком: [c.85]    [c.48]    [c.4]    [c.91]    [c.77]    [c.633]    [c.91]    [c.10]    [c.123]    [c.680]    [c.689]    [c.796]    [c.249]    [c.211]   
Коррозия металлов Книга 2 (1952) -- [ c.192 ]




ПОИСК





Смотрите так же термины и статьи:

Медь и сплавы никель и сплавы

Медь сплавы

Олово сплавы

Сплавы никеля

Сплавы никеля Jt И h I Сплав

Сплавы цинк — никель

Цинк олова

меди с оловом меди с цинком

никель сплавы меди сплавы никеля

олово сплав никеля

сплавов меди цинка

цинк оловом сплавы никеля



© 2025 chem21.info Реклама на сайте