Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сплавы свинец — олово — цинк

    МЕДИ СПЛАВЫ — сплавы на основе меди, содержащие олово, цинк, алюминий, никель, железо, марганец, кремний, бериллий, хром, свинец, золото, серебро, фосфор и другие легирующие элементы. Добавки повышают прочность и твердость, стойкость против коррозии, улучшают антифрикционные свойства. М. с. делят на латуни, бронзы и медно-никелевые сплавы. Латуни — М. с., в которых главным легирующим элементом является цинк. Самыми распространенными латунями являются томпак (80  [c.156]


    Классификация металлов . Металлы составляют большую часть всех элементов в периодической системе Д. И. Менделеева, но в технике они классифицируются по иным признакам. До настоящего времени не разработана научно обоснованная классификация металлов. В практике получили применение исторически сложившиеся классификации, базиру.ющиеся на таких признаках металлов, как их распространенность в природе, применимость, физические и частично химические свойства. Металлы делятся на черные и цветные. К черным металлам относятся железо, марганец, хром и сплавы на их основе, к цветным — все остальные. Цветные металлы делятся на 4 группы 1) тяжелые медь, свинец, олово, цинк и никель 2) легкие алюминий, магний, кальций, калий и натрий часто к этой группе относят также барий, бериллий, литий и другие щелочные и щелочноземельные металлы 3) драгоценные, или благородные платина, иридий, осмий, палладий, рутений, родий, золото и серебро 4) редкие а) тугоплавкие  [c.115]

    Подготовка раствора для анализа. Чаще всего олово приходится определять в сплавах с другими металлами. Наиболее важные сплавы-олова — это различные бронзы (медь, олово, железо), припои (олово, свинец), типографские сплавы (сурьма, олово, свинец), латуни (цинк, медь, олово). В этих сплавах олово определяют после растворения навески в азотной кислоте, при этом, как было сказано, образуется нерастворимая -оловянная кислота. [c.173]

    МЕДИ СПЛАВЫ — сплавы на ото ве меди. В виде бронзы применялись за 3000 лет до н. э. В жидком состоянии медь сплавляется со многими элементами, с большинством из них — в любом соотношении. Лишь вольфрам, молибден, осмий, рутений и тантал практически не сплавляются с нер. В твердом состоянии макс. растворимость элементов (в альфа-твердом растворе меди) изменяется в очень широких пределах от сотых и десятых долей процента (хром, ниобий, свинец, ванадий, цирконий) до процентов (серебро, алюминий, мышьяк, бериллий, кадмий, кобальт, железо, магний, кремний, титан и др.) и десятков процентов (индий, олово, цинк). Неограниченно растворяются никель, золото, марганец, палладий и платина. Однако с золотом, марганцем, палладием и платиной М. с. в твердом состоянии претерпевают превращения. С увеличением концентрации легирующего элемента в альфа-твердом растворе меди повышается мех. прочность сплавов их теплопроводность и электропроводность уменьшаются (менее всего при легировании серебром). К вредным примесям относятся висмут, сурьма, свинец и углерод (в медноникелевых сплавах), к-рые приводят к хрупкости. Стойкость против коррозии М. с. зависит от природы легирующего элемента и окружающей среды. Повышают стойкость никель, олово и алюминий. С понижением т-ры раст  [c.780]


    Сталь, алюминий и его сплавы, магний оксидированный, олово, свинец,серебро, молибден, цирконий Сталь, чугун, алюминий и его сплавы, никель, свинец, олово, хромовые, никелевые, цинковые и кадмиевые покрытия Сталь, чугун, в том числе с покрытиями, алюминий и его сплавы, магний и его сплавы, цинк, кадмий, медь и ее сплавы, олово, серебро, молибден, цирконий Сталь, медь и ее сплавы, хром, никель, свинец, кадмий, цинк, серебро, нейзильбер [c.110]

    Сплавы свинец — олово — цинк [c.305]

    СПЛАВЫ СВИНЕЦ-ОЛОВО-ЦИНК [c.141]

    Обычно на практике классифицируют металлы, исходя из общих сырьевых, технологических и потребительских признаков. Принято разделение металлов на черные и цветные. К черным металлам относятся железо и его сплавы, а также металлы, применяемые главным образом в сплавах с железом—хром, марганец. К ц в е т н ы м—относятся все остальные металлы, которые, в свою очередь, подразделяются на тяжелы е—медь, никель, свинец, олово, цинк л е г к ие—алюминий, магний, калий, натрий малы е—сурьма, ртуть, висмут, кадмий редкие—вольфрам, молибден, ванадий, кобальт, ниобий, тантал, титан, бериллий, литий и др. рассеянны е—германий, рений, индий, галлий и др. благородные—платина, палладий, иридий, осмий, рутений, золото и серебро. [c.113]

    Покрытие сплавом свинец олово — цинк обеспечивает хорошую антикоррозионную стойкость и высокую прирабатываемость деталей. Поэтому покрытие этим сплавом применяют для защиты деталей, работающих при агрессивных условиях, например деталей двигателей внутреннего сгорания. [c.172]

    Олово легко образует сплавы с многими металлами в различных соотношениях. Практическое применение нашли сплавы олово—свинец, олово—цинк, олово—никель, олово—висмут. [c.122]

    Покрытия оловом широко применяют в электротехнической промышленности благодаря хорошим контактным свойствам и в пищевой промышленности благодаря отсутствию токсичности. Наряду с покрытиями из чистого олова в специальных случаях применяют в качестве покрытий и его сплавы, например олово — свинец (сплав терн ), олово — цинк, олово — кадмий, олово—бронза и олово — никель. Данные по коррозии покрытий из олова и его сплавов можно найти в разделе 7.5 и работах Бриттона [24]. [c.398]

    Что касается металлов, то они также в большинстве случаев корродируют в среде гексафторида урана. Золото и платина устойчивы к этому соединению лишь при комнатной температуре, при нагревании же они тускнеют. Свинец, олово, цинк и железо разрушаются очень быстро. Наиболее устойчивы медь, алюминий и никель, а также сплавы на их основе (монель-металл, инконель). [c.36]

    Влияние соединений меди на окисление очищенных крекинг-бензинов исследовано Даунингом [84]. Вальтере [82] показал, что каталитическая активность медных сплавов пропорциональна содержанию в них меди. Педерсен [85].изучал влияние концентрации меди на химическую стабильность бензинов термического крекинга после сернокислотной очистки. Опубликованы результаты исследования влияния таких металлов, как сталь, медь, латунь, свинец, олово, алюминий и цинк, на бензины, различающиеся по химической стабильности [86, 87]. [c.243]

    Аноды имеют решающее значение для показателей процесса рафинирования. Рафинировать можно медь любого состава черновую, конверторную, после огневого рафинирования (табл. У1П-1), сплавы меди с никелем, цинком, кобальтом, оловом и другими металлами, а также штейны с меньшим и большим содержанием серы, однако показатели процесса будут различными. Б тех случаях, когда пирометаллургическое рафинирование неэкономично (например, при отсутствии соответствующего топлива), электролитическому рафинированию подвергают медь, из которой неполностью удалены такие примеси, как цинк, железо, свинец, олово и висмут, а также кислород и сера. На какой стадии пирометаллургического процесса медь будет в достаточной мере очищена — в конверторах или только при огневом рафинировании в отражательных печах — определяется уровнем данного производства. [c.312]

    При затруднениях в определении скорости коррозии рекомендуется пользоваться распределением металлов по группам, в пределах которых контакт может считаться допустимым. Для атмосферных условий эксплуатации можно выделить пять таких групп I — магний П — алюминий, цинк, кадмий П1 — железо, углеродистые стали, свинец, олово IV — никель, хром, коррозионностойкие стали (в пассивном состоянии) типа Х17 и 18—8 V — медно-никелевые и медноцинковые сплавы, медь, серебро, золото. [c.74]

    Металлургию подразделяют на черную (железа и его сплавов) и цветную (цветных металлов). Цветные металлы в соответствии с их свойствами делят на легкие, тяжелые, благородные, редкие и др, К легким металлам относят титан, алюминий, магний, щелочноземельные и щелочные металлы к тяжелым — медь, свинец, никель, цинк, олово к благородным — золото, серебро, металлы платиновой группы. [c.165]

    Ест расположить металлы и сплавы, находящиеся в электролите (кислоты, растворы солей, морская вода, влажный грунт и др.). в электрохимический ряд напряжений, начиная от анодного, менее благородного (корродирующего), в направлении к катодному, более благородному (защищенному), то они образуют следующий ряд магний, цинк, алюминий, кадмий, железо и углеродистая сталь, чугун, легированные стали (активные), свинец, олово, латунь, медь, бронза, титан, никель, легированные стали (пассивные), серебро, золото. При помощи этого ряда можно предсказать, какой из двух металлов при их контакте в электролите станет анодом, а какой -катодом. [c.39]


    Металлы и сплавы. Для повышения коррозионной устойчивости различных материалов применяются разнообразные методы. Рус )ф и Хайнцельман [3] получили некоторые качественные результаты по коррозионной стойкости путем обработки различных веществ парами гексафторида. Они установили, что золото и платина не реагируют с гексафторидом на холоду, при нагревании же эти металлы несколько тускнеют. Ртуть реагирует уже на холоду. На медь и серебро гексафторид действует слабо при нагревании. Свинец, олово, цинк и железо подвергаются более сильному воздействию, чем медь и серебро. Алюминий покрывается белым налетом. Натрий быстро реагирует с гексафторидом и при нагревании даже загорается. [c.358]

    Для изготовления стекловолокон повышенной прочности, а также волокон для декоративных целей в газовый поток вводят металлы, такие как цинк, свинец, олово и их сплавы или пары неорганических солей, которые не разлагаются при высоких температурах (фосфаты или нитраты щелочных металлов). Получаемый из таких волокон холст более плотен и менее порист, чем обычный. [c.385]

    Действие на металлы. При обычных температурах химически чистые фреоны не действуют на железо и его сплавы, алюминий, олово, медь, бронзу, латунь и сталь. С фреоном-113 не рекомендуется применять цинк. В присутствии незначительного количества влаги фторированные углеводороды действуют на магний, его сплавы и сплавы алюминия с 2% магния. Не рекомендуется применять свинец, если препарат содержит масла и фреон-11. [c.60]

    Этот способ имеет существенные недостатки. Если рабочий неопытен, в процессе пайки получается большое количество брака, а плохое качество электродов является одной из причин снижения качества элементов. Во время пайки в цинк вводятся посторонние примеси, так как перед пайкой шов обрабатывают соответствующей протравой и в качестве припоя пользуются сплавом, содержащим олово и свинец. При хорошей пайке припой не попадает внутрь электрода, и опасность возникновения местных гальванических элементов отпадает. Однако и в этом [c.72]

    Так, например, осаждение медноцинкового сплава (70% Си и30%2п) на сталь обеспечивает прочность сцепления стальных, изделий с резиной. Замена золотого покрытия сплавом золото— медь дает возможность увеличить износоустойчивость и твердость в два-три раза при одновременной экономии золота. Сплавы олово—цинк (Зп- гп), цинк—кадмий 2п—Сс1), цинк— никель (2п—N1) характеризуются более высокой коррозионной устойчивостью по сравнению с цинковым покрытием, что позволяет рекомендовать эти покрытия взамен цинка. Сплав никель— кобальт (N1—Со) характеризуется высокими магнитными характеристиками, он также используется при получении твердых матриц для литья и прессования пластмассовых изделий. Гальванические сплавы свинец—олово (РЬ—8п), свинец—цинк <РЬ— 2п), свинец—медь (РЬ—Си), свинец—сурьма (РЬ—5Ь) зарекомендовали себя как антифрикционные материалы, имеющие хо-рошую прирабатываемость, низкий коэффициент трения и высокую стойкость в смазочных материалах. Значительный интерес представляют защитно-декоративные покрытия сплавами медь— олово (Си—5п), олово—никель (5п—N1), медь—олово—цинк (Си—5п—2п) и др. [c.3]

    В 1829 г. А. Я. Купфером была опубликована Заметка об удельном весе сплавов и их точке плавления [36], в которой он приводит данные термического анализа системы олово — свинец. В литературе по истории химии обычно утверждается, что первая работа в области исследования металлических сплавов методом термического анализа принадлежит шведскому ученому Рудбергу (1800—1839), профессору физики в Упсале, который в 1830 г. опубликовал работу, посвященную термическому исследованию двойных металлических сплавов свинец — олово, висмут — олово, свинец — висмут, цинк — олово [37]. [c.45]

    В качестве примера электрогравиметрического определения рассмотрим определение меди. Торранс и Дил рекомендуют проводить электролиз в солянокислом растворе с анодными деполяризаторами, устанавливая катодный потенциал на достаточно отрицательном уровне (—0,40 в относительно насыщенного каломельного электрода), чтобы исключить образование растворимых хлорокомилексов меди (I). Лингейноднако, считает, что электролиз в тартратном буфере с pH 4—6 дает лучшие результаты, чем в солянокислом растворе. Метод позволяет определять медь иепосредственно во всех наиболее распространенных сплавах, содержащих, например, сурьму, мышьяк, свинец, олово, никель и цинк, ири этом он нисколько не уступает в точности многим другим, более трудоемким методам. [c.354]

    Некоторые металлы и сплавы, например алюминий, никель, свинец, олово, цинк, вольфрам, хром, молибден, ковар, константан, алюминированное железо, вообще не коррозируются в чистом влажном атмосферном воздухе. У этих металлов и сплавов процесс взаимодействия с кислородом воздуха протекает почти мгновенно. При этом образуется тонкая сплошная окисная пленка, плотно прилегающая к поверхности металла. Эта пленка не пропускает кислорода во внутренние слои металла, защищая их от окисления (там, где нет кислорода, не может быть окисления) и поэтому называется пассивирующей. [c.94]

    Для покрытия каталитически неактивных металлов (медь и ее сплавы) был предложен другой метод, который заключается в наиесении на покрываемую поверхность каталитически активного металла (например, палладия) Палладий наносится погружением деталей на несколько секунд в палладиевый раствор Следует Отметить, что на некоторых металлах вообще не удаетси получить никелевого покрытия К таким металлам относится олово, свинец, кадмий, цинк, висмут и -сурьма [c.6]

    К неорганическим покрытиям относят металлические и неметаллические покрытия (конверсионные, стеклоэмалевые и др.). Металлопокрытия по объему применения в эксплуатации несколько уступают лакокрасочным покрытиям (ЛКП). Благодаря развитию электрохимий созданы металлические покрытия, обеспечивающие высокоэффективную долговременную защиту конструкций ма-ший от коррозии. Наиболее часто используют цинковые, кадмиевые, никелевые, медные, хромовые, оловянные, серебряные покрытия, а также покрытия сплавами (олово-свинец, олово-висмут, цинк-медь, цинк-никель и др.). Из неметаллических в технике нашли применение конверсионные покрытия (фосфатные, оксидные, оксидифосфат-ные, хроматные). Основные физико-химические свойства покрытий и их стойкость в различных условиях приведены в табл. 1.2, [c.29]

    Шлак шахтной плавки продувают в шлаковозгопочной печи смесью воздуха с пылеуглем, переводя цинк, свинец и олово в возгоны. Затем его переливают с добавкой пирита в отстойник, отапливаемый мазутом, для извлечения меди. К эффективному способу переработки шлаков относят и электротермический. Он позволяет извлекать в сплав медь, олово, свинец, переводить в цинк возгоны и получать отвальные шлаки, пригодные для изготовления строительных материалов или использования в качестве удобрений, содержащих микроэлементы. [c.128]

    Это старейший электрохимический метод анализа, известен с 1864 г. В настоящее время он применяется только дпя ощ)еделения меди и анализа медных сплавов, содержащих олово, свинец, кадмий, цинк. Будучи безэталонным методом, электрогравиметрня по правильности и воспроизводимости результатов превосходит другие методы ощ)еделения этих элементов. Однако на проведение анализа требуется много времени, и метод считают уст евшим. [c.195]

    Радиоактивные изотопы оказались полезными при зучении яв лений коррозии и пассивности металлов. Точки поверхности, подвергшиеся разъеданию или окислению, могут быть найдены авторадиографически. По почернению различных частей фотопластинок, соприкасающихся с корродированной поверхностью, на которую предварительно нанесен слой изотопа, можно найти место фиксации кислорода или растворения металла. Так, авторадиография сплава сурьмы, олова и свинца, меченного РЬ тем выдерживания в растворе соли тория, показывает, что только участки, богатые свинцом, фиксируют радиоактивный изотоп свинца, между тем как фазы сурьма — олово практически не содержат его. В сплаве цинк — алюминий — свинец имеет место обратная картина радиоактивный свинец локализуется вокруг зерен эвтектики цинк — алюминий. Коррозия водяным паром протекает особенно интенсивно в точках, богатых свинцом. [c.217]

    Сталь различных марок сталь с металлическими и неметаллическими покрытиями алюминий и его сплавы медь и ее сплавы магний оксидированный цинк и кадмий хроматизи-рованные олово свинец серебро молибден ковар цирконий сочетания этих металлов [c.330]

    Ими можно паять в горячей воде олово, свинец, нейзильбер, железо, цинк, латунь. Эвтектический сплав свинца, олова и кадмия с т-рой плавления 145° С применяют в системах автоматического тушения пожаров и электр. предохранителях. Сплавы кадмия с серебром используют в качестве контактного материала. Сплав свинца и олова с кадмием (20% С(1) применяется для изготовления типографских клише (см. также Вуда сплав, Легкоплавкие сплавы. Припои, [c.525]

    ОЛОВЯНИСТАЯ БРОНЗА - бронза, основным легирующим элементом которой является олово. О. б. применяли за 3000 лет до н. э. Сплав отличается хорошими мех. св-вами, мало чувствителен к церегреву и газам, легко сваривается и паяется. Олово повышает твердость и прочность сплава, но снижает пластичность. Кроме олова, в О. б. вводят фосфор, цинк, свинец и никель (табл.). Фосфор раскисляет и рафинирует сплав, улучшает жидкотекучесть, коррозионную стойкость и износостойкость, повышает прочность. Цинк улучшает технологические свойства сплава. Свинец повышает плотность сплава, улучшает антифрикционные св-ва, обрабатываемость резанием, коррозионную стойкость в некоторых средах, однако снижает пластичность. Никель измельчает структуру. [c.112]

    Первые оловоорганические соединения были приготовлены реакцией алкилгалогенидов со сплавами олова этот метод привлек внимание лишь много времени спустя. Аналогичная реакция с использованием сплава свинец — натрий является экономически важной для производства тетраэтилсвинца. В ранних исследованиях Каура [100, 103], Гримма [282], Ладенбурга [484], Вернера и Пфейффера [886] при нагревании йодистых алкилов со сплавом олово — натрий получали смесь продуктов, содержащих тетраалкилолово. Вместо йодидов были использованы и другие алкилгалогениды (обычно под давлением) [70, 181, 304, 446, 447, 611, 667] было опубликовано несколько сообщений об использовании галогенидов [666, 667]. Леттс и Колли [516, 517] получили тетраэтилолово с 50%-ным выходо.м при нагревании йодистого этила со сплавом олово — цинк—медь в этих условиях йодистый этил не реагировал со сплавом олово — медь. [c.18]

    Термическая стойкость и стойкость метилсиликоновых жидкостей к окислению изучалась очень подробно [135]. Установлено, что на воздухе до 175° заметных изменений не происходит при 200° начинается окисление, которое проявляется в изменении вязкости и выделении формальдегида и муравьиной кислоты. Повышение вязкости при окислении приписывается конденсации силоксановых молекул, от которых под действием кислорода отш епляются метильные радикалы. При температуре выше 200° стойкость к окислению у метилсиликоновых масел сильно уменьшается, что ограничивает их применение в окислительной а мосфере. Медь, свинец и селен ингибируют окисление при 200°, о чем можно судить по меньшему выделению образующихся при этом формальде-.гида и муравьиной кислоты мед1> и селен препятствуют также изменению вязкости. Теллур, наоборот, ускоряет при этих температурах окислительный процесс. Остальные исследованные металлы и сплавы (дюралюминий, кадмий, серебро, сталь, олово, цинк) заметно не влияют на стойкость к оккслению. Весовые потери в присутствии теллура, меди, свинца и селена при 225° очень высоки среди продуктов реакции были идентифицированы циклические молекулы Dg и D4. Эти металлы, по-видимому, катализируют термическую деполимеризацию высокие потери из-за испарения в присутствии свинца объясняют взаимодействием окиси свинца с силоксанами. При испытании термостойкости метилсиликоновых масел в инертной атмосфере установлено, что заметная температурная деполимеризация наступает уже при 250°. [c.332]

    Наибольший интерес представляет металлизация ткани напылением частичек расплавленного металла. Этот метод, разработанный фирмой Metallizing Engineering o., используется для покрытия металлов, стекла, пластмасс, керамики и бумаги. (Пульверизацию расплавленного металла осуществляют потоком сжатого воздуха или инертного газа. В большинстве случаев металл берется в форме проволоки, плавление которой проводят различными способами электродуговым, газовым (в ацетилен-кислородном, водородно-кислородном и пропан-кислород-ном пламени), а также с помощью токов высокой частоты. Для металлизации тканей напылением можно использовать лишь относительно легкоплавкие металлы и их сплавы ((цинк, свинец, олово), так как при высоких температурах разрушаются частицы волокна. Покрытие тугоплавкими металлами и сплавами, такими как латунь и сталь, необходимо осуществлять на ткани, предварительно металлизированные легкоплавкими металлами. Металлизированные ткани, полученные напылением металла, используют не только в технике, например для изготовления слоистых материалов, фильтров, гибких пленочных материалов, электродов и т. д., но и в быту (для декоративных целей). [c.397]


Смотреть страницы где упоминается термин Сплавы свинец — олово — цинк: [c.85]    [c.250]    [c.7]    [c.172]    [c.633]    [c.10]    [c.196]    [c.156]    [c.689]    [c.669]    [c.175]    [c.605]    [c.175]   
Смотреть главы в:

Электролитические сплавы -> Сплавы свинец — олово — цинк




ПОИСК





Смотрите так же термины и статьи:

Амальгамы цинка, кадмия, олова, свинца и висмута (жидкие) . Сплавы калия с натрием (жидкие)

Олово сплавы

Осаждение цинка, кадмия, олова, свинца и их сплавов

Сплав свинца, олова

Травление цинка, олова, свинца и их сплавов

Цинк олова

Цинк свинца



© 2025 chem21.info Реклама на сайте