Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Солевое действие

Рис. 19.2. Действующий гальванический элемент, в котором для замыкания электрической цепи используется солевой мостик. Рис. 19.2. <a href="/info/758077">Действующий гальванический элемент</a>, в котором для <a href="/info/806547">замыкания электрической цепи</a> используется солевой мостик.

    Действие нитрата на реакцию является не общим, а специфическим солевым эффеЕСТом. Влияние серной кислоты и иона нитрата не изменяет нулевой или первый порядок реакции, и оба эти влияния подчиняются [c.561]

    Активным катализатором может быть и ион водорода. Отклонения в каталитической силе кислот в зависимости от изменения их концентрации, различную скорость гидролиза сложных эфиров слабыми и сильными кислотами, действие нейтральных соединений (солевой эффект) и т. д. следует приписать образованию промежуточных соединений. [c.547]

    В табл. 148 приведены коэффициенты высаливания [уравнение (53)] для гелия и аргона [67], водорода, кислорода, закиси азота, двуокиси углерода, иода и ацетилена [64а,б] в растворах многих солей. Кроме того, таблица содержит подобные же значения для следующих жидкостей уксусноэтилового эфира [65в,г], диацетонового спирта [656], фенилтио-мочевины [68,666] и фенола [69]. О характере наблюдаемых явлений можно судить по рис. 100 и 101, на которых представлена зависимость IgY(s) от ионной силы для двух газов и двух жидких веществ в растворах многих солей. Подобие всех изображенных кривых заметно с первого взгляда. Порядок величины эффекта высаливания одинаков во всех случаях последовательность разных солей, расположенных по силе их солевого действия , также приблизительно одинакова. Отмечаются лишь небольшие отклонения в этой последовательности расположения солей. Следует отметить, что даже для столь различных молекул, как закись азота и диацетоновый спирт, наблюдается аналогия как в отношении порядка величины эффектов, так и в смысле последовательности располоя ения солей по степени их действия. [c.375]

    Кислоты и солевое действие [c.227]

    Коррозионное разрушение теплообменников, печей огневого подогрева, блочных автоматизированных установок подготовки нефти и очистки сточных вод, отстойников, резервуаров технологического назначения и товарной нефти усиливается и в результате воздействия повышенных температур. В кожухотрубчатых теплообменниках, где теплоносителем, как правило, является товарная нефть, наиболее быстро (через 1,5—3 года) выходят из строя трубные пучки, которые в первую очередь из-за высоких термических напряжений разрушаются в местах развальцовки трубок. При подогреве недостаточно обезвоженных и обессоленных нефтей срок службы трубных змеевиков в печах огневого подогрева (ПБ-12, ПБ-16 и др.) не превышает 1 года из-за развития, язвенных поражений и даже сквозных каверн в стенках труб. Развитие локальных поражений связано с тем, что на отдельных участках внутренней поверхности труб могут образовываться солевые отложения или в тонких слоях понижается pH пластовых вод в результате гидролиза солей кальция и магния под действием высоких температур. [c.146]


    Развивается получение полиэтиленовых труб, которые изготовляют методом продавливания и путем литья. Преимущество их заключается в том, что они легкие и хорошо противостоят действию воды, солевых растворов, кислот (кроме азотной) и щелочей. По полиэтиленовым трубам можно длительное время передавать эти жидкости, стальные же трубы немедленно подвергаются коррозии под действием кислот и щелочей. [c.340]

    На действующих установках с целью упрощения солевого состава раствора последний при кипячении обрабатывается серной кислотой, что позволяет добиться полного разложения тиосульфата натрия. Кислые газы сорбируются раствором соли в абсорбере, а раствор направляется на улавливание H N. [c.172]

    Установка солевых ванн или ванн из пластовой воды для придания глинистой корке индифферентности к действию пластовых вод. [c.248]

    Таким образом, добавление хорошо растворимого сильного электролита к насыщенному раствору малорастворимого электролита с общим для них ионом действует двояко. С одной стороны, увеличение концентрации общего иона влечет за собой уменьшение растворимости малорастворимого соединения, а с другой стороны, благодаря увеличению ионной силы раствора растворимость несколько увеличивается. Последнее явление получило название солевого эффекта. [c.80]

    Для обезвреживания сточных вод от нефтяных продуктов, сернистых и цианистых соединений, фенолов, поверхностно-активных веществ, кремнийорганических соединений, пестицидов, красителей, соединений мышьяка, канцерогенных ароматических углеводородов и других соединений применяется озон. При действии озона на органические соединения происходят реакции окисления и озонолиза. Озон одновременно обесцвечивает воду и является дезодорантом, применение его не вызывает значительного увеличения солевой массы в воде. Озон подают в сточную воду в виде озоновоздушной или озонокислородной смеси с концентрацией озона в них до 3%. Для лучшего использования озона газовая смесь подается через диспергирующие устройства под слой обезвреживаемой воды. Учитывая высокую токсичность озона и малую поглощаемость его стоками, газы после прохождения через воду надо подвергать очистке от озона. Ввиду высокой стоимости озона го применение целесообразно в сочетании с другими методами — биохимическим, ионообменным, сорбционным. [c.494]

    Элементы содержат солевой электролит в твердом виде. При активировании элемента путем его нагревания происходит плавление соли. Электролит становится электропроводным и элемент начинает действовать. [c.46]

    Чтобы пояснить принцип действия гальванических элементов, мы обсудили простейшие гальванические элементы с солевыми мостиками. Конструкция используемых в технике гальванических элементов должна обеспечивать им большую прочность и портативность. Мы обсудили устройство трех электрических батарей свинцовой аккумуляторной батареи, ни-кель-кадмиевой батареи и сухого элемента. Первые две из них поддаются перезарядке, но сухой элемент не подлежит перезарядке. [c.234]

    Введение в систему ПАВ — вода солей, содержащих одинаковые с ПАВ противоионы, приводит к повышению величины точки Крафта. Это объясняется дегидратирующим действием вводимых ионов и снижением растворимости ПАВ. Введение солей с другими противоионами неоднозначно влияет на Ткр, так как вследствие обменных реакций образуется смесь различных солевых форм ПАВ и результирующий эффект зависит от их растворимости и соотношения в смеси. [c.57]

    При замерзании воды, проникшей в открытые поры материала, полузамкнутые поры служат как бы резервными емкостями, куда вода, расширяющаяся при переходе в лед, может проходить безопасно , т. е. не вызывая разрушающего давления на стенку пор. Благодаря этому улучшаются свойства бетона по отношению к действию воды, солевых растворов и замораживания, т. е. увеличивается долговечность конструкций. Удлинение же срока службы конструкций является одним из важнейших условий, определяющих повышение эффективности капиталовложений в строительство. [c.170]

    Рассмотрим пример, иллюстрирующий действие такого солевого мостика. Составим цепь [c.178]

    Флотация растворимых минералов применяется взамен более сложных и менее экономичных методов галлургии, основанных на различной растворимости компонентов разделяемой системы. Основная особенность флотации растворимых минералов (как правило, солей) заключается в том, что средой для флотации служит насыщенный раствор солей, входящих в состав обогащаемого сырья. Разделение солей ведется при аэрировании пульпы и при помощи селективных флотореагентов — собирателей. Реагенты-пенообразователи при флотации растворимых солей применяются не всегда, так как многие насыщенные солевые растворы сами по себе обладают пенообразующей способностью. Особо важное значение имеет регулирование pH среды при помощи реагентов-регуляторов, которые способствуют действию реагентов-коллекторов. Метод флотации применяется, например, для получения хлорида калия из сильвинита (минерал Na l-K l), из насыщенного солевого раствора, содержащего примерно до 100 г/дм КС и 250 г/дм Na l. Реагентами-коллекторами служат амины жирного ряда с числом углеродных атомов С б—С20. [c.17]


    С изложенным объяснением действия соли совпадают данные исследований Спора [464, 465], показывающие, что действие нейтральных солей уменьшается с повышением температуры потому, что гидратация ионов уменьшается с увеличением температуры и потребность в молекулах воды вследствие введения ионов соли становится меньше. В случае водородного иона, окруженного слоем из восьми молекул воды, солевое действие на водородные ионы будет гораздо больше для низкой концентрации, чем для высокой, потому что в последнем случае ионы соли находятся под влиянием большего числа ионов водорода и поэтому изменение активнссти отдельного иона водорода невелико. [c.223]

    Е. Ходж и Л. Свэллен [97] нашли, что можно исключить это нежелательное каталитическое действие, если к азотной кислоте прибавить небольшое количество нитратов калия или натрия. Образующаяся солевая пленка прекращает каталитический эффект и побочного процесса окисления не происходит. [c.290]

    Во-вторых, Аррениус установил, что прибавление нейтральной соли, не имеющей общего иона с катализирующей реакцию кислотой, также приводит иногда к увеличению каталитического действия кислоты. Например, скорость инверсии тростникового сахара в присутствии уксусной кислоты возрастает на 30% при прибавлении 10% (мольных) Na l. Это явление называется первичным солевым эффектом. [c.287]

    Для снижения пожарной опасности проводимых работ, расширения рабочего интервала температур водяных бань в качестве теплоносителя рекомендуется использовать водные растворы неорганических солей. Так, 58 %-ный раствор СаС1г кипит при температуре 140 С, а 75 %-ный раствор СаСЬ — при температуре 175 °С. Однако брызги солевых растворов оказывают сильное корродирующее действие на оборудование. Кро.ме того, для поддержания постоянной температуры кипящей бани необходимо постоянно доливать испаряющуюся воду до первоначального уровня. По этой причине водно-солевые бани пока не получили широкого распространения в химических лабораториях. [c.49]

    Явление осмоса играет очень важную роль в жизнедеятельности животных и растений. Оболочки клеток представляют собой перепонки, легко проницаемые для воды, но почти непроницаемые для веществ, растворенных в клеточном соке. Поэтому пресноводные рыбы не могут жить в соленой воде (где 28 атм), а морские рыбы — в пресной. Этим же объясняется и то, что когда мы ныряем в реке, открыть глаза больно, в то время как в море, где концентрация солей выше и приближается к концентрации солей в клетках роговицы, эта боль ощущается гораздо слабее. Физиологический раствор (0,9%-ный водный раствор Na l) на человека и теплокровных животных оказывает благотворное действие, так как его осмотическое давление (- 7 атм) и солевой состав близки к осмотическому давлению и солевому составу плазмы крови. [c.161]

    Ширина используемого диапазона пропорциональности зависит от емкости системы процесса, необходимой скорости корректирующего действия и пределов регулирования. Емкость обычно соотносится с тепловой или массовой емкостью системы, приходящейся на единицу изменения регулируемого параметра. Например, емкость огневого подогревателя с промежуточным теплоносителем (солевая или водяная ванна) больше емкости подогревателя прямого действия из-за массы тенло1госителя. Если удельная емкость велика и необходимо иметь быстрое корректирующее действие, рекомендуется применять узкий диапазон пропорциональности. Вообще процессы с медленно изменяющимися параметрами — преимущественная область пропорционального регулирования. Однако его применение ограничивается большим временем запаздывания. Определяющим фактором в таких случаях является соответствие размера клапана регулируемому потоку, а оптимальной настройкой диапазона — такое минимальное значение, при котором процесс не имеет колебаний. Кроме того, когда заданное значение должно поддерживаться на уровне, не зависящем от нагрузки, необходимо дополнительное интегральное звено регулирования. Если скорость интегрирования установлена правильно, движение клапана происходит со скоростью, обеспечивающей управляемость процесса. Если эта скорость велика, начинаются колебания, так как клапан движется быстрее, чем датчик фиксирует эти колебания. При медленной настройке процесс не будет достаточно быстродействующим. В пневматических системах регулирования необходимая скорость интегрирования достигается с помощью системы сдвоенных сильфонов, в которых пространство заполнено жидкостью. В отверстии для прохода жидкости имеется игольчатый клапан, который является регулятором интегрального воздействия на входной параметр. В приборах, имеющих как пропорциональную, так и интегральную характеристику, пропорциональное регулирование действует тогда, когда этот клапан закрыт, т. е. когда в точке настройки давление жидкости на обе стороны пропорциональных сильфонов одинаково. Как только пропорциональные сильфоны сдвинулись относительно точки настройки, начинает действовать интегральная составляющая регулятора. Сильфоны интегрального регулирования компенсируют это смещение перетоком жидкости из одного сильфона в другой. Скорость движения жидкости в сильфо-нах регулируется перемещением иглы клапана. [c.292]

    На титан по-разному действуют га,/10водороды, солевые (ионные) галиды и кислотообразующие и инертные (ковалентные) галиды. [c.263]

    Некоторые из производных этих кислот имеют ряд интересных применений. Например, хлоримид янтарной кислоты обладает исключительно сильным бактерицидным действием 9 г его стерилизуют суточный запас воды для роты солдат. Смесь 85/о средней натриевой соли яблочной кислоты с 14% цитратов натрия и аммония и с 1 % МпВг, имеет вкус поваренной соли и может заменять последнюю при солевой диете. Наконец, сама малеиновая кислота является сильнейшим антиокислителем достаточно 0,0001 г ее, чтобы предохранить масла от прогоркания. [c.225]

    Наконец, в нефти могут присутствовать неорганические соли (1—3 г л), которые губительно действуют па аппаратуру нефтепереработки, но не могут быть удалены механическими или химическими методами. Но диспергируя в нефти 5—15% воды, мо кпо растворить в пой эти соли, которые затем будут удалены в виде солевых растворов поело электрообработкп и отстаивания такой искусственной эмульсии. В трудных случаях такой прием повторяют дважды. [c.381]

    Теоретически действие силикатных и силикатно-солевых растворов исследователи объясняли созданием растворов с упругостью пара воды, равной упругости пара воды над глиной естественной вла кпости. Подобные растворы исключают проникновение воды в глину, поскольку вследствие равенства упругости паров воды над глиной и раствором, они находятся по отношению друг к другу в состоянии инстинпого равновесия. В. С. Шаров показал несостоятельность этой концепции, поскольку не может быть [c.188]

    Серьезным недостатком силикатных глинистых растворов является сложность регулирования вязкостных и структурно-ме-ханических показателей. Регулирование этих показателей добавками щелочи имеет крупные недостатки, так как ввод избыточного количества щелочи приводит к затвердению раствора, как это имело место при испытаниях силикатного раствора в Туркменской ССР. По мнению Э. Г. Кистера, вводимая в силикатно-солевые и силикатные растворы щелочь играет положительную роль, так как позволяет доводить модуль жидкого стекла, выпускаемого промышленностью (модуль 2,6—2,9), до оптимума, а также способствует снижению вязкости таких систем. Практически оптимальное значение модуля жидкого стекла находится в пределах 2,8—3,2, и бесконтрольное снижение его вводом щелочи не могло дать положительного эффекта с точки зрения как крепящего действия, так и регулирования показателей раствора, что н подтвердилось при бурении опытной скважины в Туркмении. Безглини-стые силикатные растворы пе поддаются утяжелению. Следует отметить, что с применением силикатных растворов пробурено несколько скважин, и эти растворы так и ие вышли из стадии испытаний, когда от их применения в Советском Союзе при бурении глубоких скважип практически отказались. [c.190]

    Действие на покрытие физико-химических факторов связано с наличием почвенного электролита и воздуха. На химическую стойкость защитного покрытия влияют солевой состав и pH электролита, воздухо- и влагонасыщенность грунта, концентрации кислорода, углекислоты, жизнедеятельность микроорганизма и другое. Под действием окружающей электролитической и биологической среды происходит так называемый процесс старения, который проявляется, например, в снижении электросопротивления покрытия. Замеры переходного сопротивления битумного покрытия толщиной 3 мм 31а газопроводе Дашава — Киев показали, что за семь лет эксплуатации оно составило 200—9000 Ом м , при начальном сопротивлении 10 ООО Ом м . Аналогичным образом влияет на процессы старения и катодная поляризация изолированного трубопровода. В процессе эксплуатации прежде всего наблюдаются насыщение влагой и механические повреждения покрытия, в то время как физико-механические свойства изоляционного материала существенно не изменяются. [c.51]

    Исследуя химические реакции, катализируемые слабыми кислотами, С. Аррениус обнаружил усиление каталитического эффекта при добавлении в раствор нейтральных солей, не содержащих одноименных с кислотой анионов. Это явление называется первичным солевым эффектом. В то же время он наблюдал, что добавление соли слабой кислоты, подавляющее диссоциацию и снижающее концентрацию ионов водорода, уменьшает скорость каталитического процесса существенно меньше, чем следовало из закона действия масс (вторичный солевой эффект). Для истолкования вторичного солевого эффекта предполагают, что каталитической активностью обладают не только ионы водорода (или гидроксила), но и анионы, молекулы недиссоциированных кислот (или оснований) и молекулы воды. Первичный солевой эффект был объяснен Я- Брёнстедом и Н. Бьеррумом. Используя уравнение Дебая — Гюккеля для коэффициента активности, они показали, что логарифм константы скорости к реакции между двумя ионами линейно зависит от корня квадратного из ионной силы раствора  [c.85]

    Довольно часто железо покрывают слоем олова ( лужение ), которое устойчиво к действию воды обычного солевого состава в присутствии кислорода воздуха. Поведение луженого железа в условиях эксплуатации изделий принципиально противоположно поведению оцинкованного железа. Повреждение слоя цинка на железе приводит к разъеданию цинка, что предохраняет железо от ржавения. Но повреждение слоя олова приводит к ржавлению железа при неизменяемости покрытия. При этом также возникает гальванический элемент, но направ--ление перехода электронов в нем иное, чем в случае с оцинкованным железом. Железо в соответствии со значениями стандартных электродных потенциалов обладает большей способностью посылать ионы в раствор и приобретает отрицательный заряд. В соответствии с этим электроны с железа переходят на олово, на поверхности которого они, взаимодействуя в кислот- [c.379]

    Образование галидов металлов солевого характера происходит при действии галоводородных кислот на элементарные металлы, оксиды, гидроксиды, сульфиды, карбонаты и другие соли слабых кислот, например  [c.10]

    Карбиды титана, циркония и гафния проводят электрический ток, легко сплавляются с металлами и другими карбидами, образуя при этом иногда чрезвычайно твердые тугоплавкие сплавы. При обычной температуре они довольно инертны при высоких же температурах ведут себя подобно соответствующим элементарным металлам (реагируют с галогенами, кислородом, серой, азотом, а также кислотами и солевыми окислителями с образованием продуктов, аналогичных получающимся при действии на соответствующие металлы). Подобного типа соединения титан, цирконий и гафний образуют с фосфором (фосфиды), кремнием (силиды), бором (бориды). [c.85]


Смотреть страницы где упоминается термин Солевое действие: [c.43]    [c.375]    [c.291]    [c.507]    [c.370]    [c.289]    [c.2]    [c.124]    [c.191]    [c.227]    [c.217]    [c.369]    [c.202]   
Физическая химия растворов электролитов (1950) -- [ c.375 ]

Физическая химия растворов электролитов (1952) -- [ c.375 ]




ПОИСК





Смотрите так же термины и статьи:

Цементы с наивысшей стойкостью по отношению к коррозийному действию циркулирующих солевых растворов



© 2025 chem21.info Реклама на сайте