Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Агрегативная суспензий

    Эффективность депрессорных присадок при кристаллизации твердых углеводородов связывают с их полярностью, снижением сольватации молекул парафина молекулами масла, нарушением агрегативной устойчивости дисперсии парафина и повышением при этом компактности кристаллических агрегатов, образованием ассоциированных комплексов молекул присадки и твердых углеводородов, что приводит к увеличению скорости фильтрования в процессе депарафинизации масляного сырья. Изучение влияния депрессорных присадок на поведение суспензий твердых углеводородов в сопоставлении с электрокинетическими исследованиями позволяет сделать вывод о возможной электростатической природе их действия. В работе [104], проведенной в этом направлении, в качестве критерия эффективности маслорастворимых присадок, используемых для интенсификации процесса депарафинизации, предложено значение энергетического барьера, создаваемого присадками на поверхности частиц дисперсной фазы в их суспензиях. Энергетический барьер учитывает кроме электрокинетического потенциала частиц дисперсной фазы и их размеры. В работе показана возможность применения маслорастворимых присадок для создания электрического заряда у частиц твердых углеводородов, обеспечивающего образование устойчивых коллоидных систем. Электрокинетические исследования реальных систем твердых углеводородов показали, что присадки, обладающие только депрессор-ным действием, эффективны в дистиллятном сырье. Для остаточного сырья следует использовать металлсодержащие многофункциональные присадки. Однако многокомпонентность масляных рафинатов, сложность состава твердых углеводородов и присутствие двух ПАВ при осуществлении процесса депарафинизации нефтяного сырья в присутствии присадок сильно усложняют изучение механизма кристаллизации твердых углеводородов, что, в свою очередь, затрудняет направленный поиск наиболее эффективных присадок для интенсификации этого процесса. [c.171]


    Рассматривая нефтяные дисперсные системы в виде суспензий возможно предположить, что размеры растворенных частиц, в частности агрегативных комбинаций, намного превышают размеры молекул растворителя. Подвижность такой растворенной частицы, представляемой в виде макромолекулы, будет определять вязкость раствора. Очевидно, такое подвижное макроскопическое тело в растворе может характеризоваться некоторым средним размером. При этом следует обратить особое внимание на нефтяные углеводородные системы, в которых растворенным веществом являются полимеры. В этих случаях необходимо рассматривать макромолекулы в двух направлениях. Так, линейный размер макромолекулы вдоль цепи велик по сравнению с молекулами растворителя. Однако размер макромолекулы в направлении, перпендикулярном главной оси, соизмерим по величине с диаметром молекулы растворителя. [c.89]

    В суспензиях проявляется так же и агрегативная неустойчивость, характерная лиофобным золям и зависящая от вязкости дисперсионной среды, толщины диффузионного слоя мицеллы (см. разд. VI.8), температуры, присутствия электролита и т. д. Например, при увеличении концентрации электролита в суспензии происходит коагуляция и ускоренное расслаивание системы. [c.293]

    Суспензия должна быть агрегативно устойчивой, т. е. частицы не должны коагулировать за время седиментации. Для этого они должны хорошо смачиваться дисперсионной средой. Иногда полезно использовать стабилизирующие добавки стабилизаторов (электролитов или поверхностно-активных веществ). [c.132]

    Работа 28. Характеристика агрегативной устойчивости суспензий по кинетике их седиментации [c.147]

    Как и другие лиофобные дисперсные системы, суспензии агрегативно неустойчивы в них происходит самопроизвольный процесс слипания частиц, приводящий к их укрупнению, что еще более увеличивает скорость седиментации этих систем. [c.147]

    Седиментация частиц дисперсной фазы из агрегативно устойчивых и не устойчивых суспензий протекает по-разному. [c.147]

    Оседание частиц из агрегативно неустойчивой суспензии происходит быстро, так как частицы при столкновениях слипаются, образуются рыхлые агрегаты последние осаждаются на дно сосуда, образуя рыхлый, большой по объему седиментационный осадок, сохраняющий коагуляционные структуры из частиц, возникающие во время оседания. С течением времени эти структуры несколько уплотняются за счет силы тяжести — объем седиментационного осадка уменьшается во времени и, наконец, достигает постоянной величины — предельного объема и (рпс. 83, кривая 7). Объем седиментационного осадка перестает меняться через относительно малое время (тао невелико), а объем осадка большой (осадок рыхлый и легко взбалтывается). [c.147]


    В агрегативно устойчивой суспензии частицы во время седиментации при столкновении не слипаются, оседают зна- [c.147]

    На величину эффекта сильное влияние оказывает влажность дисперсной фазы. Для повышения агрегативной устойчивости суспензий рекомендуется добавлять в среду 1—3% маслорастворимых поверхностно-активных вешеств (ПЛВ), [c.186]

    Работа 28. Характеристика агрегативной устойчивости суспензий по ки [c.214]

    Уравнения (У.8) и (У.17) справедливы лишь для твердых сферических частиц, движуш,ихся равномерно с небольшой скоростью в среде, которую можно считать безграничной по отношению к падающей частице. Расстояние между падающими частицами должно быть вели о, чтобы не было взаимодействия между ними и падение одних частиц не отражалось на скорости других поэтому анализ ведут обычно в суспензиях с концентрацией не выше 1% (мае.). Суспензия должна быть агрегативно устойчивой, т. е. частицы не должны коагулировать за время седиментации. [c.93]

    К грубодисперсным относятся гетерогенные системы с размерами частиц УО - 10 1. Грубодисперсные системы агрегативно неустойчивы и нуждаются в стабилизации К ним относятся суспензии, эмульсии, пены, некоторые аэрозоли. В настоящем пособии мы остановимся на суспензиях и эмульсиях. [c.58]

    Явлением, противоположным тиксотропии, является дилатансия, проявляющаяся в небольшом сопротивлении системы при низком напряжении сдвига и высоком сопротивлении при большом сдвиговом усилии. Дилатансия характерна для очень концентрированных агрегативно устойчивых суспензий, у которых нет постоянного контакта между частицами. Рейнольдс, открывший это явление в 1885 г., объяснил его тем, что движение системы возможно только при малых напряжениях сдвига и малом изменении относительного положения частиц. При больших напряжениях сдвига происходит местное сближение частиц и соответственно уменьшается свободное пространство для течения, в результате чего движение жидкости сильно затрудняется или даже приостанавливается. [c.318]

    В агрегативно устойчивых суспензиях, частицы которых достаточно сольватированы, при предельно высокой концентрации дисперсной фазы (когда частицы разделены весьма тонкой пленкой жидкости) почти вся дисперсионная среда может быть сольватно связана с дисперсной фазой. В результате этого вязкость систем обычно весьма высока. [c.322]

    Оседание агрегативно устойчивых суспензий, если частицы достаточно малы, происходит медленно и частицы, осевшие на дно сосуда, остаются разделенными друг от друга под влиянием тех же сил, которые препятствуют их агрегации. Вследствие этого частицы, скользя друг по другу, занимают положение, отвечающее минимальной потенциальной энергии и характеризующееся максимальной компактностью укладки. Полученный таким образом осадок, если он достаточно плотен, может обладать всеми механическими свойствами, присущими концентрированным суспензиям. [c.322]

    Из сказанного следует, что объем осадка может служить показателем степени агрегативной устойчивости седиментирующей суспензии. Это можно видеть [c.322]

    Если то же количество порошка кварца распределить в том же объеме четыреххлористого углерода, не способного образовывать на частицах сольватные оболочки и исключающего возможность возникновения двойного электрического слоя, то получается агрегативно неустойчивая суспензия. В этой суспензии уже за 15 мин оседания слой осадка достигает предельной толщины в 53 мм, причем он состоит всего из 7 объемн. % кварца. [c.323]

    Если по оптическим и молекулярно-кинетическим свойствам суспензии и золи с твердой дисперсной фазой резко различны, то по агрегативной устойчивости они имеют много общего. Как правило, частицы суспензий, равно как и частицы лиофобных коллоидов, имеют на поверхности двойной электрический слой или сольватную оболочку. Электрокинетический потенциал частиц суспензий можно определить с помощью макро- или микроэлектрофореза, причем он имеет величину того же порядка, что и -потен-циал частиц типичных золей. Под влиянием электролитов суспензии коагулируют, т. е. их частицы слипаются, образуя агрегаты, В определенных условиях в суспензиях, так же как и в золях, образуются пространственные коагуляционные структуры, способные к синерезису. Явления тиксотропии и реопексии при соблюдении соответствующих условий проявляются у суспензий почти всегда в большей степени, чем у лиофобных коллоидных систем. [c.367]

    Лиофобные дисперсные системы (золи, суспензии, эмульсии) агрегативно неустойчивы, поскольку у ннх имеется избыток поверхностной энергии Гиббса. Процесс укрупнения частиц (коагуляция) протекает самопроизвольно, так как он ведет к уменьшению удельной поверхности и снижению поверхностной энергии Гиббса. [c.430]

    Агрегативная устойчивость суспензий является результатом действия сил различной природы, препятствующих слипанию частиц  [c.452]

    Стабилизацию суспензий можно производить полимерами. При этом не только повышается агрегативная устойчивость, но и замедляется седиментация, так как повышается вязкость дисперсионной среды. [c.452]

    Повышение концентрации дисперсной фазы до предельно возможной величины в агрегативно устойчивых суспензиях приводит к образованию высококонцентрированных суспензий, называемых пастами. Как и исходные суспензии, пасты агрегативно устойчивы в присутствии достаточного количества сильных стабилизаторов, когда частицы дисперсной фазы в них хорошо сольватированы и разделены тонкими пленками жидкости, служащей дисперсионной средой. Вследствие малой процентной доли дисперсионной среды в [c.452]


    Кроме возникновения структурно-механического барьера для сближения частичек — гелеобразной защитной оболочки, важное условие стабилизации состоит в том, чтобы наружная поверхность такой оболочки была гидрофильной, т. е. чтобы не происходило агрегирование наружными поверхностями этих оболочек (вторичная коагуляция). Именно таков механизм действия сильных стабилизаторов суспензий, эмульсий и пен, обеспечивающих практически предельную стабилизацию — полную агрегативную устойчивость лиофобных систем. При этом стабилизаторы могут быть и сравнительно слабыми поверхност-но-активными веществами, но уже при небольшой адсорбции они могут образовывать сильно структурированные защитные оболочки. Примером служат глюкозиды (сапонин), полисахариды, высокомолекулярные соединения типа белков. [c.70]

    В решении главных задач физико-химической механики дисперсных систем — создании новых материалов с заданными свойствами и развитии методов направленного регулирования свойств дисперсий в технологических процессах центральной является проблема познания взаимосвязи устойчивости коагуляционных структур, закономерностей их формирования с дисперсностью и лиофильностью структурообразующего компонента. Особенно велика роль природы поверхности дисперсной фазы ири получении агрегативно устойчивых суспензий в органических средах, а также ири действии высоких температур, электролитов и других коагулирующих агентов. В таких случаях изменение дисперсности и природы поверхности твердой фазы увеличением или уменьшением числа несовершенств структуры и дислокаций, аморфизацией поверхностного слоя, заменой одних активных центров другими — важнейший фактор, который определяет и регулирует структурно-реологические характеристики пространственных коагуляционных структур и микроструктуры материалов, полученных на их основе. [c.79]

    Нанесение покрытия методом электрофоретического осаждения проводят из агрегативно-устойчивой суспензии, для которой в качестве дисперсионной среды могут быть использованы различные органические жидкости. Наилучшие результаты были получены при использова- [c.83]

    Различие в размерах частиц дисперсной фазы отражается на молекулярно-кинетических свойствах дисперсных систем. Частицы суспензий не участвуют в броуновском движении, они не способны к диффузии и как следствие в отличие от лиозолей суспензии седиментационио неустойчивы и в них практически отсутствует осмотическое давление. Молекулярно-кинетическое движение частиц лиозолей обусловливает энтропийное отталкивание частиц, обеспечивает равномерное их распределение по объему дисперсионной среды. Энтропийный фактор агрегативной устойчивости у суспензий отсутствует, скорость их коагуляции не зависит от броуновского движения (и не может следовать закономерностям теории кинетики коагуляции Смолуховского), а связана в основном со свойствами прослоек дисперсионной среды. Действия других факторов агрегативной устойчивости в суспензиях и лиозолях имеют много общего. [c.343]

    Агрегативно устойчивые и неустойчивые суспензии и лиозоли проявляют существенные различия при образовании осадков в результате коагуляции. Они имеют разные седиментацпонные объемы (объемы осадков) и структуры осадков. В агрегативно устойчивых системах оседание частиц происходит медленно и образуется очень плотный осадок. Объясняется это тем, что поверхностные слои препятствуют агрегированию частиц скользя друг по другу, частицы могут перейти в положение с минимальной потенциальной энергией. В агрегативно неустойчивой системе оседание чa т]П происходит значительно быстрее вследствие образования агрегатов. Однако выделяющийся осадок занимает гораздо больший объем, так как частицы сохраняют то случайное взаимное расположение, в котором они оказались при первом же контакте, силы сцепления между ними соизмеримы с их силой тялсести или больше ее. [c.344]

    Разница седиментационных объемов агрегативно устойчивых и неустойчивых систем наиболее четко проявляется, если частицы имеют средние размеры. Крупные частицы неустойчивых систем благодаря заметной силе тяжести образуют более плотный осадок, а очень мелкие частицы в устойчивых системах оседают настолько медленно, что наблюдать за осал<дением не представляется возможным. Причиной рыхлости осадков является анизометрия образующихся первичных агрегатов или флокул. Исследования показывают, что наиболее вероятны цепочечные и спиральные первоначальные образования, из которых затем получаются осадки с большим седиментационным объемом. Осадки того или иного качества получают прн осаждении и фильтрации суспензий в различных производствах. Их свойства обычно регулируют путем изменения pH, добавления поверхностно-активных веществ. Увеличение концентрации дисперсной фазы способствует образованию объемной структуры в агрегативно неустойчивых системах. Этот факт широко используется для предотвращения седиментации, в частности, при получении пластичных материалов и изделий из них. [c.344]

    Из приведенных примеров видно, что структуры со свободной и плотной упаковкой могут существенно различаться концентрацией дисперсной фазы. Область менаду свободной и плотной упаковкой является областью пластического течения. Поскольку эффективный объем частиц суспензии возрастает благодаря образованию поверхностных слоев и плеиок, то область пластического течения оказывается еще шире. Агрегативно устойчивые системы в отличие от неустойчивых систем практически не образуют структуру, отвечающую свободной упаковке, и поэтому у них мал концентрационный интервал проявления пластических свойств. Пластические свойства этих систем почти всегда проявляются прн концентрациях, близких к плотной упаковке с учетом поверхностных слоев. [c.376]

    Качество материала заготовки во многом определяется равномерным распределением частиц диснерсной фазы в системе. От этого зависит идентичность во всех частях изделия таких характе-р[гстик, как прочность, твердость и др. Неравномерность распределения частиц вызывает наиряжения в изделии, снижающие время службы материала, способствующие неравномерной усадке — искажению размеров, трещинообразованию. Характер расиределения частиц дисперсной фазы по объему изделия зависит от его формы и размеров, от свойств и гранулометрического состава суспензии или порошка, от наличия модификаторов и метода формования. Добавление адсорбирующихся веществ в суспензии и смачивающих жидкостей в порошки способствует скольжению частиц относительно друг друга и тем самым образованию плотной и ненапряженной структуры с равномерным распределенпем частиц. В агрегативно-неустойчивых системах равномерное распределение частиц достигается, например, с помощью вибрационного формования. Вибрация разрывает случайные контакты между частицами И позволяет иостеиенно создать более плотную упаковку в суспензиях [c.389]

    Гидратированность поверхности глинистых частиц (см. 5 гл. II) зависит от раскрытости гидроксидных поверхностей октаэдрических слоев, дефектности кристаллической структуры минералов, емкости и состава обменных катионов. Раскрытость гнд-роксидных поверхностей, несовершенство кристаллов н емкость обменного комплекса максимальны у монтмориллонитов. Это обеспечивает высокую агрегативную и кинетическую устойчивости водных суспензий бентонитов (7—10 % суспензии некоторых бентонитов без видимых изменений свойств могут храниться многие годы). [c.70]

    Нестабилизиро1 анные суспензии, полученные из большинства глинистых пород, теряют агрегативную устойчивость под действием электролитов, концентрации которых превышают порог коагулйции. Происходит разделение фаз с выпадением частиц глинистых пород в осадок и образованием отстоя прозрачного раствора. Чтобы предотвратить это явлен не, обычно применяют реагенты-стабилизаторы (водорастворимые эфиры целлюлозы, крахмал, акриловые полимеры, лигносульфонаты и др.). [c.7]

    Устойчивость суспензий в воде может быть повышена вследствие того, что частицы многих веществ способны отдавать ионы в дисперсной среде или адсорбировать их из неё. Прв этом вокруг частиц формируется двойной электрический слой с определенной вв ulчинoй дзета-потенциала. Значение дзета-потенциала суо-пенэии близко к потенциалу золей, и. агрегативная устойчивость X атом случае определяется электростатическим отталкиванием одноименно заряженных частиц. В определенных случаях адсорбция алектролитов, как и в золях, может наоборот повести к снижению дзета-потенциала и к. агрегации (коагуляции) суспензии. [c.44]

    Ко второй группе относятся вещества, проявляющие поверхностную активность на границе двух несмешивающихся жидкостей, но не образующих коллоидных структур. Такие вещества, адсорбируясь на поверхностях раздела, понижают свободную поверхностную энергию жидкости или твердого тела и тем самым облегчают процесс образования новой поверхности, в частности, в процессе диспергирования. Поэтому ПАВ второй группы называются диспергаторами. Сюда относятся такие важные для практики процессы, как распыление жидкостей, эмульгирование, диспергирование твердых тел и т. п. Диспергаторами могут быть любые ПАВ, адсорбирующиеся на поверхности частиц дисперсионной среды. Однако обычно применяемые диспергато-ры представляют собой вещества, стабилизирующие образующуюся высокодисперсную суспензию. Поэтому в водных средах диспергаторами служат гидрофилизирующие ПАВ, чаще поверхностно-активные полимеры. Сильно поверхностно-активные вещества, не являющиеся стабилизаторами, могут быть деэмульгаторами, т. е. способствовать разрушению эмульсий, если они сильнее адсорбируются, чем стабилизатор. В этом случае происходят вытеснение вещества стабилизатора с поверхности капелек и адсорбция вещеста деэмульгатора. Однако неспособность последнего обеспечить агрегативную устойчивость эмульсий приводит к ее разрушению. [c.34]

    Оседание агрегативно неустойчив ыхсуспензий происходит быстро из-за образования агрегатов осевщий осадок занимает большой объем, так как частицы сохраняют то случайное взаимное расположение, в котором они оказались при соприкосновении. Совершенно очевидно, что подобные системы, образующиеся при оседании суспензий, довольно близки по строению и свойствам к рассмотренным выше коагуляционным структурам. [c.322]

    Наконец, если 40 г кварцевого порошка поместить в 25 мл четыреххлористого углерода, в который предварительно было введено небольшое количество олеиновой кислоты, то при оседании суспензии снова образуется малое количество осадка большой плотности. Это следует объяснить тем, что молекулы олеиновой кислоты, адсорбируясь на кварце полярными группами, гидрофобизуюг поверхность частиц, делают их агрегативно устойчивыми в четыреххлористом углероде и тем самым способствуют компактной укладке.частиц в осадке. [c.323]

    Н. П. Песков (1920) ввел понятие о двух видах устойчивости дисперсных систем седиментационной (кинетической) и агрегативной. Седиментационная устойчивость позволяет системе сохранять равномерное распределение частиц в объеме, т. е. противостоять действию силы тяжести и процессам оседания или всплывания частиц. Основными условиями этой устойчивости являются высокая дисперсность и участие частиц дисперсной фазы в броуновском движении. Агрегативная устойчивость дисперсных систем — это способность противост()ять агрегации частиц. В этом отношении дисперсные системы делят на два класса 1) термодинамически устойчивые, или лиофильные, коллоиды, которые самопроизвольно диспергируются и существуют без дополнительной стабилизации (мицеллярные растворы ПАВ, растворы ВМВ и т. п.). При образовании этих систем свободная энергия Гиббса системы уменьшается (Лй<0) 2) термодинамически неустойчивые, или лиофобные, системы (золи, суспензии, эмульсии). Для них А6 > 0. [c.424]

    Сильно поверхностно-активные вещества (не стабилизаторы) могут быть дезмульгаторами устойчивых эмуЛьсий, т. е. способствовать их расслоению в результате коалесценции капелек. Адсорбируясь сильнее, чем стабилизатор, такие деэмульгаторы вытесняют его с поверхности капелек, но агрегативную устойчивость эмульсий они не обеспечивают, т. е. не могут предотвратить коалесценцию — слияние капелек. Адсорбируясь на твердых поверхностях, например на поверхности частичек пигментов или наполнителей, поверхностноактивные вещества второй группы могут резко изменять молекулярную природу твердой поверхности, т. е. условия ее избирательного смачивания на границе двух антиполярных жидкостей вода — масло. В результате такой ориентированной адсорбции поверхностно-активных веществ происходит гидрофобизация первоначально гидрофильных твердых поверхностей и, наоборот, гидрофилизация первоначально гидрофобных поверхностей. При этом особенно резко выражен эффект гидрофобизации он усиливается химической связью — фиксацией полярных групп поверхностно-активных веществ на соответствующих участках твердых поверхностей. Достаточно длинные углеводородные цепи, ориентированные при этом наружу, вызывают несмачивание такой поверхности водой или избирательное вытеснение воды с такой поверхности неполярной жидкостью (маслом). Такими гидрофобизато-зами являются прежде всего флотационные реагенты-собиратели. 4х задача состоит в том, чтобы в результате избирательной химической адсорбции или соответствующей поверхностной химической реакции понизить смачивание водой поверхности определенных твердых частичек, например минерала. Именно такие частички и прилипают к пузырькам воздуха в суспензии (пульпе) флотационной машины с образованием краевого угла, наибольшее гистерезисное значение которого определяет интенсивность прилипания (силу отрыва). На неокислен-ных металлах и сульфидах такими гидрофобизаторами бывают поверхностно-активные вещества со специфическими химически адсорбирующимися полярными группами, которые содержат двухвалентную серу или фосфор (например, алкил- и арилксантогенаты, тиофосфаты с металлофильными группами). [c.68]

    Для получения агрегативно устойчивой суспензии,. помимо требуемой степени дисперсности твердого вещества и нерастворимости его в жидкой среде, необходимы еще два условия 1) поверхность вещества дисперсной фазы должна быть гидрофильной, т. е. сма чиваться жидкостью 2) в системе должен присутствовать стабилизатор3 виде ионов электролита, молекул поверхностно-активного вещества или защитного лиофильного высокополимера. [c.343]


Смотреть страницы где упоминается термин Агрегативная суспензий: [c.32]    [c.43]    [c.44]    [c.147]    [c.148]    [c.323]    [c.349]    [c.452]    [c.343]   
Курс коллоидной химии (1976) -- [ c.367 ]




ПОИСК





Смотрите так же термины и статьи:

Суспензии



© 2025 chem21.info Реклама на сайте