Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Малое напряжение

    Это уравнение отражает идеальное (ньютоновское) течение жидкости, которое характеризуется следующими тремя чертами появлением сдвиговых деформаций при сколь угодно малых напряжениях, отсутствием эффектов упругости при течении и независимостью вязкости от скорости и напряжения сдвига. Полимеры, однако, обнаруживают отклонение от ньютоновского течения по всем указанным признакам. Во-первых, они могут проявлять признаки пластических тел, т. е. тел, характеризующихся наличием предела текучести — критического напряжения, только после достижения которого способно развиваться течение. Во-вторых, течение полимеров сопровождается накоплением высокоэластической энергии, что вызывает появление напряжений, перпендикулярных направлению течения, и, как следствие этого, разбухание экстру-дата, усадку образца и т. д. Полимеры, таким образом, наиболее ярко проявляют признаки вязкоупругих тел. Наконец, вязкость полимеров, как правило, сильно зависит от у и т, уменьшаясь с возрастанием последних (явление аномалии вязкости). Вязкость, соответствующая данному режиму течения и называемая обычно эффективной, будет рассмотрена ниже, здесь же мы остановимся на молекулярной трактовке ньютоновской вязкости  [c.50]


    При наличии приложенного или остаточного растягивающего напряжения нержавеющие стали в некоторых средах могут подвергаться транскристаллитному растрескиванию (рис. 18.6). Сжимающие напряжения не опасны. Чем выше растягивающее напряжение, тем короче время до разрушения. Хотя при малых напряжениях время до разрушения может быть большим, практически не существует минимального напряжения, ниже которого не происходит растрескивания при достаточно длительной выдержке металла в соответствующей агрессивной среде. [c.316]

    Для типичных твердых тел реологические кривые строят в координатах напряжение — деформация. При малых напряжениях у них происходят обратимые упругие деформации, за пределом упругости — пластические деформации и затем твердое тело разрушается. Хрупкие тела (керамика, бетоны, стекло и др.) разрушаются при нагрузках, меньших предела текучести (предела упругости). [c.188]

    Первоначальное изучение электретов, полученных из цеолитов, показало, что при напряженности электрического поля порядка 10 В/м и выше образуется гомозаряд за счет пробоя газового промежутка между поверхностью образца и электродом [686]. Эти опыты проводили при наличии зазора в 1 мм между образцом и потенциальным электродом. Знак поверхностного заряда был установлен по направлению отклонения нити струнного электрометра при опускании электрода до его соприкосновения с поверхностью образца. Величина гомозаряда а зависела от приложенного напряжения и (рис. 16.1), что можно связать с увеличением числа ионов в газовом промежутке. При малом напряжении (левая часть кривой на рис. 16.1) величина гомозаряда растет с увеличением времени поляризации. В этом случае возрастало число ионов, образующихся в газовом зазоре и оседающих на поверхность образца. Уменьшение давления газа при не слишком большой разности потенциалов вело к возрастанию гомозаряда [686], так как при этом росла длина свободного пробега. При 113 К время релаксации гомозаряда очень велико — измерения не обнаруживали изменений этого заряда за 2,5 ч. Однако при той же температуре знак гомозаряда менялся при изменении знака поляризующего напряжения, действующего всего 10 с. Это можно объяснить тем, что гомозаряд фиксировался на поверхности образца цеолита [687]. [c.256]

    Наконец, при сравнительно малых напряженностях (Ю В/м и ниже) гетерозаряд был настолько больше гомозаряда, что последним можно было пренебречь. Поскольку информацию об образце и адсорбированных на нем молекулах песет гетерозаряд, в дальнейшем мы изучали лишь его, используя сравнительно слабые поляризующие напряжения. На первом этапе изучалась поверхностная плотность заряда. При этом на образец, охлажденный до заданной темиературы, накладывали в течение 15 мин напряжение, затем его снимали и измеряли величину потенциала ф незаземленного электрода в различные моменты времени. Оказалось, что зависимость ф от времени 1 (рис. 16.3) может быть описана выражением [c.257]


    Руководствуясь этим положением и малыми напряжениями в трубах и кожухе, окончательно выбираем теплообменник  [c.169]

    Экспоненциальная формула температурно-временной зависимости прочности (VI. 20), применима в достаточно широком интервале долговечности т, охватывающем экспериментально наблюдаемые значения от 10" до 10 с. Она нарушается лишь непосредственно вблизи критического напряжения Окр и безопасного напряжения сго (рис. VI. 19). При малых напряжениях линейность зависимости lgт — а нарушается и кривая, загибается вверх, асимптотически приближаясь к вертикали, соответствующей безопасному напряжению ао или к оси ординат, если ао близко к нулю, В ряде случаев были получены долговечности полимеров при очень длительных наблюдениях. При малых напряжениях действительно обнаруживается резкий подъем кривой долговечности, [c.211]

    Дизели малой напряженности [c.439]

    В материалах без ярко выраженного предела текучести наклон кривой на рнс. 1 за точкой В меньше, чем наклон кривой в линейно области. Касательная к истинной кривой нанряжение—деформация соответствовала бы отклику, сопровождающему наложение малых напряжений на большое статическое апряжение, [c.198]

    Некоторые процессы химической технологии связаны с перемещением жидкостей, которые, в отличие от обычных вязких жидкостей, не следуют закону Ньютона [уравнение (6-8)]. К числу таких жидкостей, называемых пластичными, или неньютоновскими жидкостями, относятся растворы многих полимеров, коллоидные растворы, густые суспензии и др. Эти жидкости при малых напряжениях внутреннего трення х (в н м ) не текут, а лишь изменяют форму. В условиях, когда х становится больше некоторого значения о > о), начинается течение таких жидкостей. [c.127]

    Процесс ЭК-Ф может протекать при использовании как растворимых (железо, алюминий и т. д.), так и нерастворимых (платина, графит, титан и др.) анодов [10, 14]. В первом случае при малых напряженностях происходит преимущественное выделение в раствор ионов металла анодов, обеспечивающих коагуляцию загрязнений. Во втором случае коагуляция осуществляется только за счет силового действия электрического поля. [c.61]

    Для уменьшения опасности поражения электрическим током предусмотрено применение малых напряжений. В производственных переносных электроустановках применяют напряжение [c.575]

    С развитием техники и приборостроения стало возможным непосредственно измерять достаточно малые напряжения и э.д.с. гальванических элементов с большой точностью без опасения концентрационной поляризации электродов. Для этой цели служат электронно-ламповые вольтметры, в которых циркулирующий ток становится весьма малым благодаря большому входному импедансу и далее перед выходом усиливается при помощи специальных полупроводниковых схем. При выходе ток подается на приспособление, вызывающее отклонение стрелки вольтметра на шкале. [c.136]

    В другом случае результатом процесса может быть получение жидкого детергента заданной вязкости. Чтобы достигнуть этого результата, жидкость необходимо перемешивать при определенных значениях насосного эффекта и напряжения сдвига. Если напряжение сдвига слишком велико, детергент может разрушиться, а при слишком малом напряжении сдвига детергент может не быть однородным и гомогенным. [c.52]

    Если во всех экспериментах применяется один и тот же режим охлаждения (непрерывный или с остановками), то положение области стеклования на температурной шкале для всех свойств совпадает и не зависит от частоты механических или ультразвуковых колебаний. Вообще механические, электрические и другие виды силовых воздействий из-за самой природы структурного стеклования не влияют на Тс, если эти внешние воздействия достаточно малы. При оценке многих механических воздействий, например при измерении модулей упругости, необходимо считаться с тем, что только малые напряжения и деформации практически не влияют на структуру полимеров и, следовательно, на температуру стеклования. [c.87]

    Решение. При малых напряжениях сдвига (О < т < 10 Па) можно принять, что 1]эф ло, а при t > Ю - что т эф т . [c.174]

    В чем заключается физическая сущность понятия действующего объема в процессе течения концентрированных растворов и расплавов полимеров при больших и малых напряжениях сдвига  [c.205]

    Релаксация напряжений и ползучесть линейных несшитых поли-меров только качественно описываются с помощью моделей Фойхта и Максвелла даже при малых напряжениях и деформациях, когда эти материалы линейно вязкоупруги. Рис. 6.6 иллюстрирует сходство и разницу между экспериментом и теорией. Основное отличие состоит в том, что предсказываемая теорией реакция материала иа приложенные извне воздействия описывается простой экспоненциальной зависимостью от времени О ( ) и J ( ), в то время как из рис. 6.6 видно, что экспериментально наблюдаемые значения О (/) н J (1) удовлетворительно аппроксимируются лишь суммой экспонент типа встречающихся в уравнениях (6.4-2) и (6.4-4). Таким образом [c.148]

    Таким образом, в случае присутствия кадмия изменение силы тока в зависимости от приложенного напряжения можно выразить кривой, приведенной на рис. 42. При малом напряжении, недостаточном для электролитического выделения кадмия на ртутном катоде, ток практически не идет. При увеличении напряжения до определенной величины начинается резкое увеличение силы тока. Это напряжение характерно для кадмия. Если в растворе присутствуют другие металлы, которые занимают при данных условиях другие места в ряду напряжений, то они будут восстанавливаться при других значениях приложенного напряжения. Поэтому полярографическая волна, т. е. скачкообразное увеличение силы тока, наблюдается при определенном, характерном для каждого металла напряжении тока, приложенного к электродам. Необходимо иметь в виду, что величина этого напряжения сильно зависит от присутствия в растворе других электролитов, а также от того, находится ли определяемый металл в виде хлорида, нитрата, аммиачного комплекса и т. п. Поэтому качественный полярографический анализ возможен только при строго определенных условиях среды. [c.212]


    Дискретные или непрерывные спектры гибкоцепных несшитых полимеров определяются ио уравнениям (6.4-5) и (6.4-6) или (6.4-7) и (6.4-8) соответственно из экспериментов ио релаксации и ползучести при малых напряжениях и деформациях. Для расчетов используют графические и приближенные методы [26]. [c.149]

    Экспериментально полученные кривые релаксации напряжений ири малых деформациях или кривые ползучести при малых напряжениях можно совместить, сдвигая их вдоль оси времени, в одну обобщенную кривую (релаксации или ползучести) [27]. [c.149]

    Диспергирование наполнителей в среде низкой вязкости, т. е. при малых напряжениях сдвига, требует значительных сдвиговых деформаций, что достигается, например, увеличением продолжительности смешения, а также введением наполнителей на ранних стадиях, а пластификаторов — в конце цикла смешения. [c.182]

    При малых напряжениях т структура практически не разрушена и дисперсная система имеет высокую и постоянную вязкость (см. рис. 89, участок I). При полном разрушении (рис. 94,6) вязкость достигает минимального и независимого от т значения (рис. 89, участок ///). [c.157]

    Примером тела, проявляющего вязкие или упругие свойства в зависимости от напряжения, является вязкопластическое тело Бингама. Модель Бингама представляет собой комбинацию из всех трех идеальных элементов к соединенным параллельно элементам Ньютона и Сен-Венана — Кулоиа последовательно присоедииеи элемент Гука (рис. VII. 7). В этой модели при малых напряжениях развиваются только упругие деформации, а ири достижепии Р > Рт имеет место пластическая деформация, растущая до бесконечности (течение) (см. рис. VII. 76). Еслп проанализировать изменение скорости деформации в зависимости от напряжения, то окажется, что модель Бингама можно представить и без упругого элемента, деформация которого не зависит от времени. Иногда его и представляют только в виде параллельно соединенных вязкого элемента (модели Ньютона) п элемента сухого трения. Сложение деформаций и учет независимости упругой деформации от времени приводит к математической модели вязкопластического тела — уравнению Бингама  [c.363]

    В ненапряженном (разгруженном) образце в отсутствие коррозионных процессов трещина постепенно будет смыкаться вплоть до образования начального дефекта или начальной микротрещины, от которых она росла, так как вероятность нахождения частиц в левом минимуме больше, чем в правом. Малые напряжения не изменяют знака асимметрии потенциальной кривой, а при больших напряжениях знак асимметрии меняется (штриховая кривая на рис. VI. 18). В результате более вероятным становится разрыв свя- [c.210]

    Для одноосного растяжения в направлении ориентации идеального ориентированного полимера Сяо получил зависимость долговечности от приложенного напряжения (рис. VI. 21). В области не слишком малых и не слишком больших напряжений зависимость, изображенная на рис. VI. 21, вполне может быть представлена экспоненциальной формулой (VI. 16). При малых напряжениях прямые загибаются вверх, что соответствует наличию безопасного напряжения, ранее предсказанного теорией Бартенева. [c.215]

    Замена СКБ станет возможной только после создания производства бутадиенового полимера с высоким содержанием 1,2-звеньев на основе более совершенной технологии полимеризации в растворе. Такой полимер, содержащий 75—85% 1,2-звеньев, выпускается в опытных условиях (каучук СКБС). В отличие от полибутадиенов с преимущественным содержанием 1,4-звеньев, этот каучук проявляет ряд особенностей, обусловленных его микроструктурой. Так, температурная зависимость скорости деформации при малых напряжениях сдвига (текучесть) имеет резкий перегиб в области 40—50 °С, что связано с высокой мольной когезией каучуков этого типа (рис. 1). [c.187]

    Хладотекучесть СКД (см. табл. 3) ниже, чем у СКДЛ, что связано с некоторой, хотя и очень небольшой, его разветвленностью. Установлено также [68], что хладотекучесть СКД уменьшается с увеличением коэффициента полидисперсности (при той же средней М). При сопоставлении каучуков СКД с узким и широким ММР обнаруживается инверсия текучести при переходе от малых напряжений сдвига (хладотекучесть) к высоким (вальцуемость). Полимеры с широким ММР обладают за счет высокомолекулярных фракций определенной каркасностью , которая препятствует течению при малых напряжениях сдвига. В то же время присутствующие в них низкомолекулярные фракции являются своеобразным пластификатором, облегчающим течение при высоких напряжениях сдвига. Подобная инверсия была подтверждена экспериментально [68] при исследовании текучести каучуков с различным ММР (рис. 3). [c.190]

    Часто оба эти процесса (процесс электрокристаллизации и процесс анодного растворения металла) протекают достаточно быстро и не сопровождаются заметными перенапряжениями. Например, если опустить две медные пластинки в раствор медного купороса и включить электрический ток, то уже при малом напряжении происходит элeктp0литичe к0li растворение анода и осаждение меди на катоде. Как известно, на этом основано электрорафинирование (очистка меди электро-лизом). [c.635]

    Кристаллические линейные полимеры при нагревании их выше температуры кристаллизации Т р переходят либо в высокоэластическое состояние, либо в вязкотекучее. Такие полимеры при Т<Ткр ведут себя при малых напряжениях как твердые тела, и величины деформаций их весьма незначительны. При 7 >Г р деформации резко возрастают. Таким образом, термомеханическая характеристика кристаллических линейных полимеров весьма проста. Этого нельзя сказать о структурирующихся пространственных (сетчатых) полимерах (рис. 45). Если образование поперечных полимерных связей (сшивание) происходит при Тсш>Тт, то полимер с повышением температуры переходит в вязкотекучее состояние лишь до определенного предела. По мере развития процесса сшивания величина деформации течения уменьшается (кривая ). В дальнейшем с ростом температуры течение вовсе становится невозможным, и полимер из вязкотекучего состояния переходит в высокоэластическое и, наконец, в стеклообразное. Если в полимере образование поперечных связей происходит при Тст<Тт, В зоне высокоэластического состояния, то переход в вязкоте- [c.107]

    Теоретические исследования поведения органических веществ в неводных растворах при наложении неоднородного электрического поля [117, 118] позволяют объяснить поведение частиц твердых углеводородов петролатума в таком поле. При сравнительно малых напряженностях электрического поля вследствие поляризации двойного слоя частицы движутся в область большего градиента потенциала. При увеличении напряженности, когда происходит поляризация материала частиц, возникает пондеромотор-наясила, которая изменяет направление частиц в зависимости от диэлектрической проницаемости дисперсной фазы и дисперсионной среды. Измерения при помощи моста переменного тока Р-570 на частоте 1000 Гц показали, что диэлектрическая проницаемость дисперсионной среды больше, чем дисперсной фазы (2,00 и 1,93 [c.189]

    На рис. 2.20,а изображена схема восстановления изношенных поверхностей, а на рис. 2.20,6 - поперечное сечение восстановленной детали. Изношенную поверхность 1 восстанавливаемой цилиндрической детали 2 шлифуют до придания ей цилиндрической формы. После этого на поверхности 1 выполняют насечку в виде ячеек 5, которые полностью заполняют связующим материалом класса пастообразных припоев для пайки стали -чугуна. Затем на поверхность 1 с заполненными ячейками 5 накладывают ленту 3 и прихватывают ее концы контактной сваркой. При этом фебни 6 ячеек плотно прилегают к внутренней поверхности ленты. После прихватки сварочными роликами 4 окончательно приваривают ленту током большой силы (8 -10 кА) и малого напряжения (3,35 В) с одновременным приложением усилия сжатия 1,5 - 2,0 кН. [c.56]

    Измерение температуры термоэлектрическими приборами основано на свойстве сплава двух разнородных металлов давать нри нагревании электрическое напряжение (термоэлектричество). Возьмем две проволочки из разных металлов или из различных сплавов, спаяем одни концы этих проволочек вместе, а другие, свободные, соединим с гальванометром — прибором, измеряющим малые напряжения электрического тока (рис. 69). Есл теперь нагреть место спая, то стрелка гальвано- 69. Схема термоэлектри метра отклонится, что указывает на ческого пирометра, возникновение электрического тока различные металлы термопары  [c.121]

    Было бы неправильным считать, что проблема злектрообработки решена, а внедрение метода сдерживается только отсутствием соответствующей аппаратуры. Существует обширная информация о влиянии электрического поля на обратные эмульсии и значительно меньше сведений о поведении в этом поле прямых эмульсий. Теоретическое рассмотрение поведения частиц дисперсной фазы в полярных средах касается лишь узкой области малых напряженностей электрического поля и относится, в основном, к однородным полям. Еще меньше изучены процессы, протекающие в дисперсиях под влияп лем неоднородных полей с высоким градиентом потенциала. [c.59]

    Для возникновения коррозионного растрескивания необходимы напряжения, близкие к напряжению, вызывающему пластическую деформацию металла. Практически большинство металлов и сплавов не подвергается коррозионному растрескиванию, если приложенное напряжение меньше 0,7сго,2. Известны, однако, случаи растрескивания металлов при малых напряжениях (0,1ао,2). [c.450]

    В понижающих трансформаторах для питания ручного электроинструмента, ручных ламп с пониженным лапряжеиием и сварочных трансформаторов вторичные обмотки заземляют (рис. 22) или зануляют. При замы- кании между обмотками человек может попасть пол на-пряжение, равное сумме падения напряжения на заземлителе (напряжение относительно земли) и вторичного (малого) напряжения трансформатора [c.59]

    Адсорбционно-сольватные слон и диснерсионная среда НДС пг()ают роль смазочных слоев и определяют вместе с тем подвижность ССЕ, пластичность и ползучесть НДС даже ири малых напряжениях сдвига. Медленно развивающиеся и спадающие после снятия нагрузки обратимые деформации сдвига характерны не для ССЕ, а для образованной из ССЕ решетки (или каркаса) с тонкими прослойками среды по участкам контакта. Такие пространственные структуры (решетки) обладают тиксотропными свойствами, т. е. способны к обратимому восстановлению после механического разрушения. [c.129]

    Это не значит, конечно, что задача уменьшения нагароотложе-ний в камере сгорания двигателя лишена практической целесообразности. В двигателях тихоходных, термически мало напряженных нагарообразование в камере сгорания может серьезно затруднить эксплуатацию. Еще в 1946 г. была показана возможность резко снизить нагарообразование путем добавки к маслу или дизельному топливу, например, присадок, являющихся сильными окислителями, как дихлорбензол или хлорнитробензол [10]. Однако главный интерес представляет все же вопрос уменьшения отложений в зоне поршневых колец. [c.362]

    Самойлов Г. Г., Томашевский Э. Г. Кинетика фотодеструкцпи напряженных полимеров.— Физика твердого тела, 1968, т. 10, № 4, с. 1094— 1097 Бобоев Т. Б., Регель В. Р., Черный Н. Н. О влиянии ультрафиолетовой радиации на долговечность полимеров под нагрузкой в области малых напряжений, где наблюдается эффект загибов зависимости lgT=/(a).—Механика полимеров, 1969, т. 5, с. 929—931 (1969). [c.330]

    В общем случае, как уже отмечалось, сдвиговая вязкость полимерной системы является убывающей функцией Р (рис. V. 2). При малых напряжениях сдвига вязкость не зависит от Р, напряжение является линейной функцией скорости сдвига. В этой области, следовательно, соблюдается закон Ньютона. Отсюда и вязкость системы носит название наибольшей ньютоновской. Постепенное повы" шёние величины Р приводит к разрушению суперсетчатой флуктуационной структуры полимерной системы. При больших напряжениях сетка полностью разрушается, и вязкость системы достигает наименьшего значения, переставая зависеть от Р (наименьшая [c.171]

    Экспериментальное изучение процессов деформации вязких и вязкоупругих (т. е. обладающих и обратимыми деформациями см. [49]) систем как в установившемся, так и в переходных режимах производят либо при постоянной скорости деформации, либо при постоянном напряжении сдвига. Для математического описания наблюдаемых кривых течения используются самые различные выражения. Так, в инженерной практике получила широко1е распространение формула Оствальда —де-Вила (V. 12). Область малых напряжений сдвига удовлетворительно описывается, например, формулой Айзеншитца  [c.172]


Смотреть страницы где упоминается термин Малое напряжение: [c.60]    [c.575]    [c.222]    [c.92]    [c.6]    [c.212]    [c.239]    [c.69]   
Смотреть главы в:

Меры электробезопасности в химической промышленности  -> Малое напряжение


Меры электробезопасности в химической промышленности (1983) -- [ c.30 , c.49 ]




ПОИСК







© 2025 chem21.info Реклама на сайте