Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотосинтез химия

    Этот процесс требует затрат энергил. Ее источником в фотосинтезе является солнечный свет. Кроме этого, необходимым элементом этого процесса является участие катализатора - зеленого пигмента раст ении - хлорофилла. Исследование этого вещества -- одна из драматических страниц истории химии. На этой страище славные имена К.А. Тимирязева. М.С. Цвета, Р. Вильштеттера, Г. Фишера, Р. Вудворда. Роберт Вудворд не только завершил исследования строения хлоро-фи.пиха, но сумел и реализовать его полный синтез  [c.258]


    Значительный успех на этом пути снова был достигнут благодаря процессам координационной химии. Центральную роль в механизме аэробного метаболизма, который приводит к полному сгоранию органических молекул, играют цитохромы. Так называются молекулы, в которых атом железа связан в комплекс с порфирином, образуя с ним гем (см. рис. 20-20), а гем связан с белком. Атом железа переходит из состояния окисления 4- 2 в + 3 и обратно в результате переноса электронов от одного компонента цепи к другому. Весь аэробный механизм представляет собой совокупность тесно связанных друг с другом окислительно-восстано-вительных реакций, окончательным результатом которых является процесс, обратный фотосинтезу  [c.257]

    Химия древесины и синтетических полимеров - теоретическая основа технологий химической и химико-механической переработки древесины. Древесина является уникальным сырьем, постоянно возобновляемым в процессе фотосинтеза, и квалифицированное комплексное использование всей ее биомассы представляет собой важнейшую задачу с позиций экономики и экологической безопасности. Возрастание роли древесины в связи с сокращением запасов традиционного сырья химической промышленности угля, нефти и газа - определяет особую перспективность исследовании в области химии и химической технологии древесины и других растительных источников сырья. Несмотря на все более широкое развитие производства различных синтетических полимерных материалов, древесина как промышленное сырье для механической технологии не теряет своего значения. В наши дни нет ни одной области экономики, культуры и быта, где бы ни применялись древесина и продукты ее переработки. [c.5]

    Химические реакции тесно связаны с такими физическими процессами, как электрические явления, теплопередача, поглощение или излучение электромагнитных колебаний. Например, химические реакции, протекающие в гальванических элементах и аккумуляторах, являются причиной возникновения электрического тока. Многие химические реакции сопровождаются выделением или поглощением энергии в виде теплоты, а возникновение других реакций обусловлено действием света. Так, поглощение солнечного света зелеными растениями вызывает сложные реакции фотосинтеза, в результате которых из двуокиси углерода и воды образуются различные органические соединения. Таким образом, физическая химия решает наиболее общие вопросы химии, опираясь на физические законы и методы исследования. [c.5]


    Оригинально и увлекательно написана большая глава об особой роли углерода в химии. Традиционному изложению основ органической химии и начал биохимии предшествует рассмотрение уникальной способности углерода к образованию бесконечного множества устойчивых структур вместе с тем показано, что даже ближайшие к углероду элементы в периодической системе не обладают такими свойствами. Авторы интересно рассказывают о строенип и механизме действия ферментов. Но особенно увлекателен (хотя и не прост) материал об эволюции усвоения энергии живыми системами (от анаэробной ферментации к фотосинтезу и далее к кислородному дыханию). [c.7]

    Предлагаемый вниманию читателя учебник написан известным американским биохимиком Д. Мецлером. Автор поставил перед собой цель дать анализ структур, функций и процессов, характерных для живой клетки, с позиций современной биоорганической химии и молекулярной физики. Он концентрирует внимание на всестороннем рассмотрении протекающих в клетках химических реакций, на ферментах, катализирующих эти реакции, основных принципах обмена веществ и энергии. Впервые приведена классификация химических механизмов ферментативных реакций (нуклеофильное замещение, реакции присоединения, реакции элиминирования, реакции изомеризации и др.). В этом наиболее наглядно проявилась особенность рассмотрения биохимических проблем с позиций биоорганика. Обстоятельно изложены многие вопросы, которым прежде не уделяли должного внимания в курсе биохимии. Это касается в частности количественной оценки сил межмолекулярно-го взаимодействия, принципов упаковки молекул в надмолекулярных структурах (самосборка), кооперативных структурных изменений макромолекул и их комплексов. Приведены основные сведения о структуре и функциях клеточных мембран, об антигенах и рецепторах клеточных поверхностей. Весьма подробно рассмотрены также вопросы фотосинтеза, зрения и ряда других биологических процессов, связанных с поглощением света при этом охарактеризована природа некоторых физических явлений, наблюдаемых при взаимодействии света и вещества. [c.5]

    Химические реакции, протекающие под воздействием света, называются фотохимическими, а сам раздел физической химии, занимающийся их изучением, получил название фотохимии. Примеров фотохимических реакций можно привести очень много. Так, смесь газов водорода и фтора на свету взрывается, аммиак разлагается на водород и азот, бромид серебра разлагается с выделением металлического серебра, что широко используется в фотографии, процесс отбелки тканей кислородсодержащими соединениями хлора также протекает под воздействием света и т. д. К числу фотохимических процессов относятся и реакции фотосинтеза, в результате которых в зеленых растениях из оксида углерода (IV) и воды образуются различные органические соединения, главным образом углеводы. [c.172]

    Изучение физической и коллоидной химии дает возможность получить более глубокие знания об окружающем мире и, в частности, позволяет на более высоком уровне решать проблемы, связанные с развитием научных основ ведения сельского хозяйства. Физико-химический подход позволяет понимать процессы, идущие в такой сложной системе, как почва, улучшать производство новых удобрений, внедрять более эффективные методы разработки и вводить химические средства борьбы с вредителями и болезнями растений. Исследования фотохимических реакций, столь блестяще начатые К- А. Тимирязевым, позволяют глубже понять сущность сложных процессов фотосинтеза. Исследование почвенных коллоидов — необходимое условие повышения плодородия. [c.7]

    Изучение с помощью физической химии фотохимических реакций позволяет глубже вникать в сущность сложных процессов фотосинтеза. [c.8]

    Многие важные научные открытия последних десятилетий были осуществлены на стыке наук, в том числе химии и биологии. Они способствовали раскрытию многих сторон и тайн жизни и наследственности, процессов фотосинтеза и т. п. В. И. Ленин писал Познание есть отражение человеком природы. Но это не простое, е непосредственное, не цельное отражение, а процесс ряда абстракций, формирования, образования понятий, законов et ., каковые. .. и охватывают условно, приблизительно универсальную закономерность вечно движущейся и развивающейся природы .  [c.184]

    Область использования явления радиоактивности в химии настолько велика, что здесь мы сможем привести лишь несколько примеров. По-видимому, наиболее характерным из них является применение меченых атомов для исследования химических реакций. Использование этого метода сделало возможным столь важное для химии открытие, как установление механизма участия углерода и фосфора в фотосинтезе подробнее об этом рассказывается в гл. 28. [c.433]


    Фотохимическая реакция—химическая реакция, вызываемая действием света. Напр., фотосинтез в растениях, распад бромида серебра в светочувствительном слое фотопластинки, превращение молекул кислорода в озон в верхних слоях атмосферы, взаимодействие хлора с водородом на свету с образованием НС1 и т. д. Фотохимия — область химии, которая занимается изучением фотохимических реакций. [c.145]

    Окислительно-восстановительные реакции — самые распространенные и играют большую роль в природе и технике. Они являются основой жизнедеятельности. С ними связаны дыхание и обмен веществ в живых организмах, гниение и брожение, фотосинтез в зеленых частях растений. Их можно наблюдать при сгорании топлива, в процессах коррозии металлов и при электролизе. Они лежат в основе металлургических процессов и круговорота элементов в природе. С их помощью получают аммиак, щелочи, азотную, соляную и серную кислоты и многие другие ценные продукты. Благодаря окислительно-восстановительным реакциям происходит превращение химической энергии в электрическую—в гальванических элементах и аккумуляторах. Они же лежат в основе мероприятий по охране природы. Поэтому эти реакции преобладают и в школьном курсе неорганической химии. [c.141]

    K.-интермедиаты разнообразных хим. и биохим. процессов, в т. ч. процессов окисления тиольны групп в белках, фотосинтеза, термич. разложения сульфоксидов. [c.459]

    Из курса химии и биологии известна роль различных элементов в жизни растений. Часть элементов растения получают в результате процесса фотосинтеза, происходящего в зеленых листьях, другие же элементы растения [c.156]

    Таким образом, началась новая эра изучения химии фосфора — столь многообразного в своих функциях элемента 3-го периода Системы Д. И. Менделеева при этом начали слегка приоткрываться тайны процесса фотосинтеза углеводов и одновременно стали ясны новые подробности в учении о каталитическом действии железа с его уникальными свойствами. [c.345]

    Элементарный азот реагирует при комнатной температуре с образованием аминокислот и белков в клубеньках некоторых растений. Реакцию катализируют ферменты, а энергию, необходимую для эндотермических процессов, обеспечивает фотосинтез. Химия этого процесса фиксации азота растениями не известна. Полученные в настоящее время данные указывают на то, что катализирующие этот процесс ферменты содержат железо или молибден в двух различных центрах. Один ценпр связывает молекулу N2, а другой активирует перенос электрона к связанной молекуле N2, что приводит к ее восстановлению до NH3 или RNH2, вероятно, через промежуточное образование N2H2 и N2H4. [c.437]

    Создание и рациональное применение новых и высокоэффективных удобрений, разработка и внедрение пестицидов, улучшение физических и физико-химических свойств почвы невозможны без знания основ физической химии. Изучение почвенно-погло-щающего комплекса и гумуса почв, так необходимое для раскрытия способов повышения плодородия, прежде всего осуществляется с выявления физико-химического механизма возникновения, изменения и деградации этих систем. Глубокое исследование процессов фотосинтеза на основе знания механизма фотохимических реакций позволит в будущем повысить коэффициент использования солнечной энергии культурными растениями. [c.3]

    Неравновесные электронно-возбужденные состояния молекул играют решающую роль в первичных актах фотосинтеза. Кванты света поглощаются системой молекул хлорофилла, затем по экситонному механизму энергия возбуждения передается димеру хлорофилла с послед, фотохим. разделением заряда. Порождаемые внеш. воздействием (светом, хим. превращениями в среде) неравновесно возбужденные атомы, молекулы, сложные мол. комплексы обусловливают высокую избирательность биохим. р-ций, управление и самоорганизацию хим., биол. и физиол. процессов, характерных для живой природы (см. Самоорганизация в неравновесных процессах). [c.219]

    Главным толчком к исследованию химии пирролов послужили работы, посвященные изучению строения пигмента крови — геми-на, а также хлорофилла, пигмента зеленых частей растений, обеспечивающего процессы фотосинтеза. Было обнаружено, что в результате глубокого распада этих двух сложных пигментов образуется смесь алкилпирролов. И действительно, в живой клетке эти пигменты синтезируются из порфобилиногена, единственного ароматического пиррола, участвующего в процессе основного метаболизма и выполняющего в нем жизненно важные функции. [c.215]

    В специальной главе Свет в биологии (гл. 13) обсуждаются не только проблемы фотосинтеза, зрения и других биологических реакций на свет, но и природа поглощения света, флуоресценции и кругового дихроизма. В гл. 14 подробно рассматриваются процессы биосинтеза и распада множества азотистых соединений. Эта глава может быть полезна как студентам-биохимикам — при работе над литературными обзорами, так и преподавателям курсов химии природных соединений. [c.9]

    Химия углеводов — одна из наиболее интересных областей органической химии. Она охватывает широкий круг вопросов от чрезвычайно сложной проблемы понимания процесса фотосинтеза до столь же сложной задачи распутывания стадий в ферментативном превращении (- -)-глюкозы в двуокись [c.931]

    Одновременно с реакцией (28.1) происходит фотофосфорилирование с превращением АДФ в АТФ с участием неорганического фосфата. Приведенная выше схема фотохимического разложения воды на хлорофилле находится в согласии с современными представлениями химии. Источником молекул Н2О в фотосинтезе может явиться присутствующий в фотосинтетическом аппарате аквакомплекс марганца [Мп(Н20)б(Н20) ], способный доставлять молекулы воды хлорофиллу, так как является одним из самых лабильных комплексов ионов /-металлов с Н2О. [c.741]

    В течение многих лет все исследователи химии лигнина считали, что он образуется в растении из двуокиси углерода путем фотосинтеза, по всей вероятности, через углеводы (Брауне, 1952, стр. 71). Это было доказано экспериментально Стоуном. [c.774]

    Окислительно-восстановительные реакции играют в химии чрезвычайно важную роль, о процессы горе ния, получения металлов и кислот, коррозии металлов дыхания, фотосинтеза, работы нервной системы и т, д Окислительно-восстановительные свойства элемен тов и их соединений мон<но предсказать, пользуясь пе рио,дической системой элементов Д. И. Менделеева. Ти личными восстановителями (донорами элект ронов) являются а) простые Беш,ества, атомы которых обладают наименьшей электроотрицательностью (эле- [c.99]

    Окислительно-восстановительные реакции играют в химии чрезвычайно важную роль. Это — 1роцес сы горения, получения металлов и кислот, коррозии металлов и дыхания, фотосинтеза, райоты нервр ОЙ системы и т. д. [c.81]

    ФОТОКАТАЛИЗ, ускорение хим. р-ции, обусловленное совместным действием катализатора и облучения светом. Для кинетики фотокаталитич. р-ций характерны те же закономерности, что и для каталитич. и фотохим. р-ций (см. Каталитических реакций кинетика, Фотохимические реакции). Особенность фотокаталитич. р-ций состоит в том, что раздельное действие света или катализатора не оказывает значит, влияния на скорость р-ции. Ф.к. широко распространен в природе (см., напр.. Фотосинтез). [c.170]

    Мииерали.чация орг, в-в происходит гл. обр. в результате деятелыюсти микроорганизмов, а также растений н животных, При этом образуются СОг, НгО, NHj и др. простые соед., выделяется поглощенная при фотосинтезе анергия, к-рая расходуечся на хим. процессы в земной коре. Носители этой энергии — в осн, прир. воды, к-рые, поглощая продукты разложения орг. в-в, приобретают высокую хим. активность и разрушают горные породы. С ра.)ложением орг. в-в связано образование почв, илов, осадочных пород, залежей угля, нефти и горючих газов. [c.75]

    БИОСФЕРА (от греч Ьюз-жизнь и sphau a-map), оболочка Земли, в к-рой осуществляется деятельность живых организмов Б охватывает нижнюю часть атмосферы-тропосферу, гидросферу и верхнюю часть литосферы, к-рые взаимосвязаны сложными биогеохим циклами миграции в-ва и энергии Начальный момент этих циклов -использование солнечной энергии растениями (в процессе фотосинтеза) для создания биогенных в-в За миллиарды лет благодаря фотосинтезу огромное кол-во солнечной энергии превратилось в энергию хим связей орг соед, произошло накопление в атмосфере своб Oj [c.289]

    Предметом биокоординационной химии должны быть такие комшюксы жизни и их функции, как хлорофилл и световая стадия фотосинтеза, гемо- [c.717]

    Хотя на протяжении долгого времени исследования редких и иногда весьма неустойчивых частиц, которые испускают атомные ядра, вьшол-няли физики, в последние годы многие свойства атомных ядер приобрели чрезвычайно важное значение для химии. В частности, для объяснения многих ранее установленных фактов оказалось очень э< ективным применение радиоактивньк изотопов, или, как принято говорить, меченых атомов , которые также помогают решать проблемы, представлявшиеся необыкновенно трудными при исследовании традиционными экспериментальными методами. Например, меченые атомы позволили установить механизм фотосинтеза, что было совершенно невозможно до 1945 г. [c.424]

    Многие биохимические превращения настолько малозаметны и требуют столь малых количеств реагентов, что их не удавалось проследить до тех пор, пока не был изобретен метод меченых атомов. Его применение оказало большую помощь в исследовании химии живых систем, поскольку он позволяет проследить in vivo за судьбой следовых количеств различных химических элементов, поступающих в организм с пищей (например, кобальта, цинка, иода), без вскрытия живого организма. Одними из самых замечательных достижений в этой области стали работы Кальвина, установившего механизм фотосинтеза, а также Шенхеймера, который пока- ал, что любая ткань в организме непрерывно подвергается процессу разрушения и восстановления. [c.477]

    В курсе органической химии специально не рассматривается явление фотосинтеза, так как оно подробно освещается в курсе общей биологии. В связи с этим учащимся предлагают задание межпредметного характера. [c.186]


Смотреть страницы где упоминается термин Фотосинтез химия: [c.258]    [c.211]    [c.159]    [c.3]    [c.75]    [c.76]    [c.279]    [c.306]    [c.519]    [c.291]    [c.486]    [c.179]    [c.150]    [c.260]   
Фотосинтез (1972) -- [ c.79 , c.203 , c.234 , c.273 , c.274 ]




ПОИСК





Смотрите так же термины и статьи:

Фотосинтез



© 2025 chem21.info Реклама на сайте