Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

природном газе в смесях с водородом

    Никелевый катализатор на окиси алюминия ГИАП-3 предназначен для конверсии природного газа (метана) водяным паром в смесь окиси углерода, д вуокиси углерода и водорода. Его выпускают в виде гранул серого цвета размером 15 X 15 мм с содержанием 5,1% NiO и 1, 3% активной у-АШз носитель сформирован из технического глинозема и занимает 93,6% общей массы. Насыпная плотность катализатора составляет 1 г/см механическая прочность на раздавливание — не менее 45 кгс/см .  [c.140]


    В качестве источника сырья для производства продуктов нефтехимической промышленности стали использовать метан из природного газа. Конверсией метана с водяным паром или реакцией с кислородом получали газ синтеза (смесь окиси углерода и водорода) и водород. Таким образом, метан из природного газа стал одним из исходных продуктов для получения синтетического метилового спирта и синтетического аммиака. Синтез аммиака был разработан в Германии непосредственно перед первой мировой войной, за ним последовало развитие процесса производства синтетического метанола в обоих случаях исходным сырьем служил каменный уголь. Подобно этому и паро-метановый и метано-кислородный процессы получения газа синтеза имеют европейское происхождение, при этом в качестве сырья используется метан, являющийся побочным продуктом в процессах разделения коксового газа или при гидрогенизации угля. [c.21]

    Процесс Вульфа для получения ацетилена состоит в пиролизе природного газа или пропана нри температуре 1200—1400° и низком парциальном давлении в печах, работающих по регенеративному циклу с периодами пиролиза и нагрева. Процесс Вульфа наиболее применим там, где имеется много дешевого углеводородного сырья, а смесь окиси углерода и водорода, получающаяся нри пиролизе по методу Захсе, не нашла бы применения. [c.96]

    Сырьем для производства аммиака является смесь азота и водо рода. Эту смесь получают разными способами. Наиболее распространенные из них газификация твердого и жидкого топлив с последующей конверсией окиси углерода, конверсия метана и других углеводородных газов, комплексная переработка природного газа в ацетилен и синтез-газ, фракционное разделение горючих газов, в частности коксового, методом глубокого охлаждения, разделение воздуха на азот и кислород с применением для этого глубокого холода и электрохимический способ получения водорода и кислорода. [c.151]

    Биогаз — это смесь из 65 % метана, 30 % СО2, 1 % сероводорода и незначительных примесей азота, кислорода, водорода и угарного газа. Энергия, заключенная в 28 м биогаза, эквивалентна энергии 16,8 м природного газа 20,8 л нефти 18,4 л дизельного топлива. В основе получения биогаза лежит процесс метанового брожения, или биометаногенез — процесс превращения биомассы в энергию. [c.21]


    Продукты окисления. Неполное окисление углеводородов и углеводородных смесей всегда было исключительно интересным объектом исследования. Сложность этой проблемы объясняется двумя причинами во-первых, сама реакция окисления является трудноуправляемой и, во-вторых, — реакционная смесь содержит бесчисленное множество соединений самых различных классов. Из всех процессов неполного окисления углеводородов наиболее хорошо изученным и освоенным является получение синтез-газа (смеси СО п водорода) для производства метанола и для оксосинтеза [300]. Сырьем для этого процесса служит метан (природный газ) в смеси с 95 %-ным кислородом. Очистка продукта реакции от СО позволяет также получать водород (в смеси с азотом) для синтеза аммиака (301—305]. [c.584]

    Метанол можно получать из природного газа. Смесь метана с водяным паром пропускают над катализатором. При этом получаются оксид углерода и водород. Эта смесь в промышленности называется синтез-газ  [c.640]

    Среднюю термическую сажу (МТ) производят по этому методу с выходом до 250 кг на 1000 ж природного газа. Около 90% газа в период сажеобразования разлагается в генераторе. Тонкую термическую сажу (FT) производят аналогичным способом, за исключением того, что исходный природный газ разбавляют водородом из предыдущего цикла. Обычно применяют смесь, содержащую 1/3 природного газа и 2/3 водорода. Природный газ можно разбавлять и другими двухатомными газами. Вследствие некоторой потери тепла при этом выход тонкой термической сажи ниже, чем средней термической. Чтобы увеличить выход тонкой и средней термической саж применяется предварительный подогрев воздуха, подаваемого в генератор. Производство тонкой термической сажи требует больше фильтров на единицу продукции из-за большего объема газового потока. Насыпная плотность термических саж составляет 480 /сг/ж , поэтому в течение многих лет их упаковывали в негранулированном виде. В настоящее время термические сажи выпускают и в гранулированном виде. [c.248]

    Способ был уже подробно рассмотрен, когда речь шла о переработке природного газа. В данном случае он применяется или для концентрации жидкой составной части (Сз и С4 — углеводороды) крекинг-газа, или для отделения водорода и метана. Этим очень сильно облегчается дальнейшее разделение сконцентрированной таким образом углеводородной смеси. Принцип разделения основан на том, что углеводородная смесь вступает в контакт с промывочным маслом (абсорбентом) при таких условиях температуры и давления, при которых метан и водород в нем не растворяются и удаляются из установки. Свободный от метана и водорода газ, абсорбированный маслом, выделяют из последнего нагревом и затем разделяют. Табл. 39 показывает результат разделения пирогаза путем абсорбции при комнатной температуре и давлении 20 ат. [c.72]

    Паро-кислородная конверсия метана. Основное количество водорода для синтеза аммиака производится в настоящее время паро-кислородной или наро-воздуш-ной конверсией углеводородов, обычно природного газа, главным компонентом которого является метан. Конвертируемая смесь горючего, кислорода и водяного пара пропускается через контактный аппарат с насадкой из гранул никелевого катализатора. Реактор диаметром [c.77]

    Сырьем в производстве аммиака является азотоводородная смесь (АВС) стехиометрического состава N2 Н2 = 1 3. Так как ресурсы атмосферного азота практически неисчерпаемы, сырьевая база аммиачного производства определяется вторым компонентом смеси — водородом, который может быть получен разделением обратного коксового газа, газификацией твердого топлива, конверсией природного газа (рис. 14.5). [c.192]

    Напомним еще раз, что, кроме рассмотренного выше метода синтеза H N, существует конкурирующий некаталитический электротермический процесс. Он осуществляется следующим образом псевдоожиженный слой кокса нагревают до температур > 1400°С, и пропускают природный газ или смесь углеводородов с аммиаком, которые дают H N и водород /2/. [c.85]

    Топливные элементы появились недавно, срок их службы на более тяжелых, чем природный газ, видах топлива невелик. На практике даже природный газ должен быть конвертирован паром в смесь водорода, окиси и двуокиси углерода, остаточного метана, которая подается в анодную камеру топливного элемента (косвенный топливный элемент). На катодной стороне для обеспечения максимальной реакционной способности вместо воздуха предпочтительнее использовать кислород. [c.333]

    Коксовый газ представляет собой сложную смесь, состоящую из водорода (50—60%), метана (20—30%) и сравнительно небольших количеств азота, оксидов углерода, ненасыщенных углеводородов и других примесей. Коксовый газ в чистом виде или в смеси с природными газами используется в качестве топлива или химического сырья. [c.86]


    Сначала руду обогащают, получая 70%-пый концентрат в виде влажного порошка. Смешивая его с клеящим веществом, подвергают обжигу и получают окатыши. Затем их металлизируют, т. е. воздействуют водородом и оксидом углерода (II) (их получают конверсией природного газа) как восстановителями. Этот процесс идет при температуре более 1000 °С в специальных печах шахтного типа, где смесь газов (СО и На) подается снизу, а окатыши поступают сверху. Полученные металлизован-ные окатыши — шарики серого цвета, содержащие более 98% железа, непрерывно загружают в электросталеплавильные печи и выплавляют высококачественную сталь. [c.153]

    Природный газ представляет собой смесь газов, состав которой зависит от месторождения. Иногда это почти чистый метан, но обычный состав природного газа таков около 75% метана, 15% этана и 5% пропана, а также небольшие количества других примесей, прежде всего высших алканов, азота, диоксида углерода, а иногда и гелия. Природный газ используется как промышленное топливо, а содержащиеся в нем алканы, прежде всего метан, являются важным химическим сырьем (разд. 8.4.1.1). Большое значение имеет каталитическое разложение содержащегося в природном газе метана водяным паром при высоких температурах. При этом образуется смесь водорода и оксида углерода, так называемый синтез-газ [c.242]

    Естественно, что выход водорода будет тем больше, чем выше концентрация его в молекулах сырья. С этой точки зрения, наиболее благоприятное сырье — метан, в молекуле которого 25% (масс.) водорода. Источником метана являются природные газы с концентрацией 94—99% (об.) СН4. Используют также сухие газы нефтепереработки. На заводе топливного профиля с глубокой переработкой нефти получают сухие газы (смесь отдувочных газов гидроочистки, гидрокрекинга и риформинга), которые содержат водород, метан и этан. Установлено, что из подобного газа извлекать водород при его концентрации менее 30—35% неэкономично, однако в качестве сырья каталитической конверсии сухой газ вполне пригоден. [c.268]

    Исходный природный газ очищается от сероводорода и углекислого газа, осушается и попадает в метановую ректификационную колонну. Здесь при температуре —100° С происходит снижение всех углеводородов, кроме метана. Поэтому из верхней части колонны выделяется газообразный метан с примесью других несжижающихся газов, к числу которых относятся азот, водород, редкие газы (гелий, аргон). Смесь этана и более тяжелых углеводородов из нижней части метановой колонны поступает в этановую колонну, где поддерживается такая температура, что этан выделяется из верхней части колонны, а из нижней части удаляются пропан и более тяжелые углеводороды. В следующей, пропановой колонне получают пропан и т. д. (табл. 7). [c.295]

    В качестве восстановителей предложены водород, азотоводородная смесь, оксид углерода (И), природный, нефтяной, коксовый н богатые газы, пары керосина, мазута и др. [56, 57]. Практическое применение и промышленности нашел природный газ, содержание серы в котором не должно превышать 20 мг/м . [c.59]

    На первой стадии очищенный от вредных примесей (серы и др.) природный газ, основу которого составляет метан, конвертируется в реакторах, конверторах или генераторах в синтез-газ. Чистый синтез-газ — это смесь водорода (Н ) и оксида углерода (СО) с определенным их объемным соотношением. [c.225]

    В качестве восстановителя можно использовать и гидросульфит цинка или смесь его с известью в различных соотношениях, а также соединения, содержащие фосфор Р(1), природный газ, аммиак, древесный уголь, водород и др. [c.72]

    Метод прямого восстановления был очень актуален примерно до 1960 г. Потом его развитие несколько затормозилось быстрый успех завоевал метод восстановления углерода, содержащегося в чугуне, путем продувки кислорода сверху. Однако, по международным прогнозам, прямое восстановление опять вернет себе важную роль в черной металлургии. Большинство процессов этого метода (например, получение сталей мидрекс , арм-ко , пурофер , гил ) осуществляется следующим образом. Через окатыши железной руды при температуре почти 1000°С пропускается газ-восстановитель (например, получаемая из природного газа смесь водорода с оксидом углерода). При этом непрерывно образуется губчатое железо. Другой метод отличается от изложенного тем, что восстановление происходит во вращающейся печи, а восстановителями служат твердые горючие вещества. Мощность установок составляет в настоящее время около 1000 т/сут следующим этапом станет достижение производительности 2000 т/сут. [c.261]

    Поэтому пребывание газа в зоне высоких температур должно быть весьма кратковременным (тысячные доли секунды), после чего газ необходимо очень быстро охладить (закалка). При электропиролизе природный газ нагревают пламенем электрической дуги в специальной печи. Целесообразно для уменьшения расхода электрической энергии газ предварительно нагревать до 600—800° С. Прошедший через печь газ охлаждается вбрызгиванием воды затем из него в циклонах и промывкой удаляют сажу, а после сжатия в компрессоре до 10 ат извлекают диметилформамидом ацетилен, который выделяется снова из раствора при снижении давления и нагревании. Остальную часть газа — смесь водорода с непрореагировавшим метаном — можно перерабатывать методом глубокого охлаждения(см. часть Х1П, 2) в азотоводородную смесь для синтеза аммиака. На 1 т ацетилена расходуется 4500 нм природного газа и 10 500 квт-ч электроэнергии, но при этом дополнительно получается до 100 кг сажи. [c.275]

    Пиролитическая, или высокотемпературная каталитическая дегидрогенизация этапа [5] или этаиовой фракции природных газов (смесь этана и пропана) [5а, 6], а кроме того, высших парафинов и других углеводородов, также ведет к образованию этилена. Из соединений, которые рекомендуются патентной литературой в качестве катализаторов этих процессов, лучшими являются диабаз и корунд [7], активированная или плавленая окись алюминия [8] и окись хрома 19]. При высокотемпературной каталитической дегидрогенизации этана в реакционной смеси, кроме этилена и водорода, обнаруживается большее или меньшее количество метана и ненасыщенных углеводородов нропилеиа, бутиленов, бутадиена, ацетилена и др. Эти соединения образуются в результате побочных реакций, в которых главную роль [c.17]

    Насыщение углеродом идет очень быстро при пользовании смесью метана с водородом, взятых в соотношении 1 1. Такую смесь легко приготовить из природного газа и водорода, пропуская их в нужном соотношении в реакционную трубку. Науглероживание этим способом требует времени в 2—2,5 раза меньше, чем вышеописанным спссобом. Однако метан в качестве науглероживающей среды менее пригоден, чем окись углерода, так как получаемые карбиды могут загрязниться углеродом вследствие легкой диссоциации метана с выделением углерода. [c.264]

    Чтобы процесс Фишера-Тропша мог быть отнесен к пофтехт мнтсской нромышленности, сиитез-газ (смесь окиси углерода — водорода) в папизм специальном случае должен получаться нз природного газа. [c.28]

    Схема одной из получивших широкое распространение установок для производства водорода паровой каталитической конверсией нефтезаводского газа при дав.яепии 2,0—2,5 МПа показана на рис. 40. Нефтезаводской газ сжимается компрессором 70 до 2,6 МПа, подогревается в подогревателе 7 до 300 —400 °С и подается в реакторы 2 и 3 для очистки от сернистых соединений. В случае использования в качестве сырья бензина, последний подают насосом, смешивают с водородсодержаш,им газом, испаряют и подогревают до той же температуры. При использовании природного газа к нему также добавляют водородсодержащий газ. К очищенному газу в смесителе 11 добавляется перегретый до 400—500 °С водяной пар и полученную парогазовую смесь подают на паровую каталитическую конверсию углеводородов (в некоторых случаях парогазовую смесь дополнительно подогревают). [c.128]

    В настоящее время из природного газа получакрт азотоводородную смесь для синтеза аммиака и так называемый синтез-газ (водород и окись углерода), используемый для синтеза метанола, а также различных альдегидов и кетонов методом оксосинтеза. [c.330]

    Преобразование лигроина в газ с помощью пара может быть осуществлено двумя путями в зависимости от температуры реакции. При этом можно получать либо смесь окиси углерода с водородом при высокой температуре (около 800°С), либо метан, разбавленный двуокисью углерода и водородом, при температуре около 470°С. Второй процесс, известный 1как низкотемпературный риформинг, более предпочтителен для производства ЗПГ, поскольку в этом случае можно упростить последующие стадии очистки и обогащения газа. Если ЗПГ должен отвечать только техническим критериям по взаимозаменяемости с природным газом, может оказаться достаточной его очистка от больщей части двуокиси углерода, которая приблизит ЗПГ по характеристикам горения, но не по теплоте сгорания, к природному. Если обеспечения коммерческой взаимозаменяемости не требуется, полученный газ можно оставить в этом виде. Только при необходимости удовлетворения и технической, и коммерческой совместимости ЗПГ и природного газа необходима дальнейшая обработка полученного газа. [c.100]

    Катализаторы метанирования активируются водородом, восстанавливающим окислы никеля в металлический никель. Аппарат сначала продувается от кислорода азотом или азото-водородной смесью, затем разогревается до 200° С со скоростью около 20—50° С в час. Начальный разогрев иногда осуществляется таким инертным газом, как азот или природный газ, но чаще применяется процессионный газ (азото-водородная смесь). Этот газ может использоваться, если катализатор не восстановлен, чтобы не было никакой опасности образования карбонила никеля (см. стр. 214). [c.206]

    Показано, что твердость таблеток может быть увеличена при нагревании до 900 °С разработки в этой области продолжаются. Для регенерации щелочного глинозема испытывались различные газы они перечисляются ниже в порядке уменьшения эффективности реформированный природный газ, водород, генераторный газ и метан. Соединения хлора (содержащегося в каменноугольном газе) адюорбируются щелочным глиноземом и не десорбируются в процессе обычной регенерации, но мо гут быть удалены из адсорбента при обработке его отходящими газами при 600" С. Так, для регене-радии адсорбента а небольших устапавках был иопользован водород при 650 °С, тогда как на крупных установках применялся реформированный природный газ или генераторный газ. При этом получали сероводород, СО2 и воду эта смесь может служить сырьем для установки Клауса с целью получения элементарной серы. [c.172]

    Любые газообразные углеводороды (в частности, метан), содержащиеся в водороде, который в дальнейшем используется для получения аммиака, не изменяются при пропускании через катализатор синтеза аммиака. Поскольку непрореагировавшие газы возвращаются в цикл, газообразные углеводороды накапливаются и снижают парциальное давление водорода. При получении синтез-газа для производства аммиака концентрацию углеводородов снижают до 0,2- 0,5%, На стадии конверсии природного газа водяным паром образующийся в первичном реакторе газ может содержать 5-10% метана. Этот газ смешивают с определенным количеством воздуха (синтез-газ должен содержать азот) и пропускают смесь над катализатором вторичной высокотемпературной конверсии. Этот катализатор находится в адиабатическом реакторе, футированном тугоплавкими материалами. Поскольку реакция конверсии экзотермическая, температура в реакторе поднимается до [c.166]

    Смесь окиси углерода и водорода, необходимую для синтеза высигих спиртов, получают из природного газа (метана) частичным сжиганием с кислородом или каталитической конверсией с водяным иаром [57а]. Следовательно, этим путем, правда, очепь сложным и дорогим, можно превращать метап в изооктап. [c.312]

    В США прямое окисление природного газа осуществляют две фирмы. Фирма Ситиз сервис ойл компани имеет установку в г. Таллант (шт. Оклахома), на которой природный газ окисляют при умеренных температуре и давлении в смесь равных весовых количеств метилового спирта и формальдегида. Наряду с ними образуются в меньших количествах ацетальдегид и метилацетон схему этой установки см. в работе [10]. Согласно опубликованным патентам [11], природный газ, содержащий j—С4-угле-водороды, смешивают с 10 об.% воздуха и пропускают при 460° и 20 ama над твердым контактом. Первоначально катализатором служил платинированный асбест позже стали применять смесь фосфата алюминия и окиси меди на инертном носителе. Продукты окисления выделяли охлаждением газовой смеси, которую в заключение промывали при 0° частью конденсата, образовавшегося при охлаждении. Природный газ окислялся неполностью, тогда как кислород реагировал целиком отходящие газы либо возвращали обратно, смешивая со свежими порциями природного газа и воздуха, либо сжигали. Жидкие продукты реакции содержали в среднем 5—6% ацетальдегида, 34—36% метилового спирта, 20—23% формальдегида, воду и небольшие количества кислородных соединений более высокого молекулярного веса. Время реакции не превышало нескольких секунд, иногда даже меньше 1 сек. температуру реакции регулировали подогревом входящего в реактор газа до температуры на 50° ниже рабочей. Для максимального выхода формальдегида давление не должно было превышать 20 ат при 50 ат основным продуктом являлся метиловый спирт. В патентах указывается, что большая часть метана не реагирует и получаемые продукты образуются в результате окисления высших углеводородов. [c.72]

    Метан (СН4) представляет собой бесцветный неядовитый газ без запаха и вкуса главная составная часть природного газа (до 99%). Используется как топливо (разд. 8.2) и как химическое сырье [в особенности для производства синтез-газа или светильного газа (разд. 8.2), а также водорода, ацетилена, ци-ановодорода, сажи и хлорпроизводных метана]. Смесь метана с воздухом очень взрывоопасна (угроза взрыва в шахтах). Метан образуется при разложении целлюлозы (так называемый болотный газ) и различных биологических остатков (биогаз). Он входит в состав атмосферы некоторых внешних планет Солнечной системы и, по-видимому, существует в твердом состоянии на очень холодных небесных телах (метановые льдины в море жидкого азота). [c.249]

    По нааначанию циклы охлаждения можно подразделить на рефрижераторные, ожижительные и газоразделительные. Рефрижераторные циклы предназначены для охлаждения и термостатирования различных объектов при низких температурах. Ожижительные установки находят применение в процессах получения жидких кислорода, азота, водорода, метана и других газов. Гаэоразделительные установки используют для выделения, например, из воздуха или природного газа их компонентов. Иногда подвергают ректификации предварительно ожиженную газовую смесь. [c.59]

    В промышленности метиленхлорид получается хлорированием метана (природного газа) при 500° С. Природный газ очищают от гомологов метана и хлорируют. После окончания.реакции газовую смесь охлаждают, отделяют хлористый водород, осушают и далее подвергают ректификации. При этом в основном получается метиленхлорид, а также,хлористый метил, хлороформ и небольшое количество четыреххлЬристого углерода. Хлористый метил и непрореагировавший метан добавляют к свежему метансодержащему газу, поступающему на хлорирование, а хлороформ и четыреххлористый углерод выделяют. На каждую тонну метиленхлорида получается 0,44 т хлороформа и 0,11 т четыреххлористого углерода. [c.84]

    Газы и газовые смеси с относительной плотностью по воздуху меньше единицы (например, водород, природный газ, азотоводородная смесь) скапливаются в основном вверху, поэтому в установках для получения водорода, компрессорных станциях природного, водяного и полуводяного газов, азотоводородной сМеси и других аналогичных помещениях наиболее опасной нвляется верхняя зона помещения. Устройство вытяжных шахт и фонарей позволяет значительно уменьшить или полностью устранить вероятность образования в помещениях опасных концентраций указанных газов. [c.389]

    В некоторых случаях (например, при наличии в природном газе наряду с меркаптанами дисульфидов) применяется более сложный способ сероочистки. К природному газу, нагретому до 380—400 °С, добавляют водород или азото-водородную смесь в таком количестве, чтобы в смешанном газе содержалось 5—10% водорода. Эта смесь при 380—400 С очищается от сероводорода и от большей части органических соединений серы при помогци поглотителя на основе окиси цинка. Затем на кобальтмолибдепо-вом или никельмолибденовом катализаторе дисульфиды и другие устойчивые соединения серы гидрируются в сероводород, который далее адсорбируется поглотителем на основе 2пО, помещенным в очистном аппарате после гидрирующего катализатора. [c.115]

    Имеются три основных источника, из которых метан поступает в атмосферу природные, антропогенные и квазиприродные. К последним относятся биологические или геохимические, находящиеся под контролем человеческой деятельности. В природных условиях метан образуется за счет анаэробных микроорганизмов - метаногенов. В начале в результате жизнедеятельности микроорганизмов - деструкторов разлагается мертвое органическое вещество. При разложении образуется целый ряд органических веществ, таких как уксусная кислота, метанол, метиламин и смесь водорода и углекислого газа. [c.28]

    Природный газ — нафтид, представляющий собой смесь газовых углеводородов (метана, этана, пропана, изобутана) в различных количественных соотношениях. Он может содержать такие жидкие углеводороды, как пентаны и гексаны. В его состав входят неуглеводородные газы углекислый, сероводород, азот, водород и гелий. [c.19]


Смотреть страницы где упоминается термин природном газе в смесях с водородом: [c.171]    [c.117]    [c.61]    [c.251]    [c.60]    [c.51]    [c.248]    [c.110]    [c.89]    [c.366]   
Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1952-1960) (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Водород из природного газа

Природные газы



© 2025 chem21.info Реклама на сайте