Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Классификация химических реакций по механизму

    Каким образом катализатор может влиять на химическую реакцию Если принять, что катализатор в заметной степени при реакции не расходуется, то термодинамически можно показать, что его роль в реакции не заключается в изменении точки равновесия, а сводится к ускорению достижения равновесия. Однако в большинстве химических систем имеются метастабильные состояния, обладающие свободной энергией, промежуточной между свободной энергией реагирующих веществ и состоянием равновесия. Мы можем приписать специфичность катализатора его свойству увеличивать скорость достижения одного из таких промежуточных состояний, а не общему ускорению в направлении достижения состояния с наименьшей энергией. Так как катализатор влияет на скорость реакции и не влияет на состояние равновесия, невозможно дать общее кинетическое описание поведения катализаторов. Болес полно проанализировать поведение катализатора можно, только зная конкретный механизм, по которому протекает данная реакция. Однако целесообразно провести классификацию катализаторов по строению и связанному с ним действию катализаторов на тип реакций, протекающих по данному механизму. Для твердых тел обычно принимают следующую классификацию  [c.531]


    Классификация химических реакций по характеру разрыва химической связи. При протекании химических реакций ковалентные связи в органических соединениях разрываются либо по гомолитическому, либо гетеролитическому механизму. При гомолитическом разрыве связи электронная пара распадается на два электрона и соответственно возникают два атома (или две группы атомов) с неспаренными электронами — радикалы. К гомолитическим относятся реакции радикальной полимеризации, горения органических соединений и др. [c.301]

    Классификация химических реакций по механизму [c.112]

    Классификация химических реакций может быть осуществлена по различным признакам — с учетом состава, строения, агрегатного состояния, механизма реакций, условий их протекания, а также явлений, сопровождающих химический процесс. Если основой классификации химических реакций служат данные о составе и числе исходных и полученных веществ, то определяется четыре типа химических реакций соединение, разложение, обмен, замещение. При этом число исходных веществ уменьшается (соединение) или увеличивается (разложение), или остается неизменным (обмен, замещение). [c.83]

    В последнее время принята также классификация химических реакций с точки зрения изменения степеней окисления реагирующих веществ и механизма процессов. На этой основе стали выделять а) окислительно-восстановительные реакции б) реакции, отличающиеся механизмом превращения сопряженные, параллельные, цепные, ионные, радикальные, протолитические ит. д. в) реакции диспропорционирования и обратные им реакции конпропорционирования. [c.63]

    Классификация химических реакций до сих пор проводилась на основе внешних характерных черт [8]. Это положение распространяется и на гомогенные газовые реакции [9]. Реакции различных порядков, протекающие между атомами и молекулами, обычно классифицируются по числу реагирующих компонентов и их свойствам. Кроме того, простые или сложные реакции различают по их механизму. Однако основой для таких классификаций служат внешние характеристики, полученные при исследовании формальной кинетики,которые не связаны или слабо связаны с поведением атомов, с ролью миграции электронов в ходе реакции. В то же время, поскольку кинетические параметры реакции связаны с образованием переходных комплексов, классификация должна основываться на сущности химического процесса, на внутренних характеристиках реакции. С точки зрения логики такая классификация рассматривается как естественная систематизация. Для того чтобы провести естественную систематизацию в гомогенных газовых реакциях и установить как можно большее число соотношений, целесообразно подробно рассмотреть некоторые законы классификации. [c.51]


    Формальная кинетика изучает зависимость скорости реакции (протекающей при постоянной температуре) от различных факторов, а также занимается классификацией химических реакций. Формальная кинетика не объясняет характера наблюдаемых зависимостей и детального механизма протекающих процессов. Процессы изучаются и классифицируются на основе нескольких принципов, принимаемых за аксиомы. К их числу относится закон действующих масс, который позволяет выразить скорость химической реакции с помощью молярных концентраций реагентов. Для элементарной реакции [c.254]

    Классификация химических реакций белков на основе механизмов этих процессов предоставляет логическую основу для обсуждения относительных реакционных способностей групп и, по-видимому, дает возможность рассмотреть химические реакции белков и сравнительную реакционную способность функциональных групп на примерах простых белков. Этот подход, однако, не лишен недостатков. Во-первых, далеко не достаточны данные по изучению механизмов реакций этих простых белков. В таких случаях приходится пользоваться аналогиями с реакциями, проводившимися с еще более простыми соединениями, вместо того чтобы опираться на данные, полученные непосредственно при изучении реакций белков. Во-вторых, рассматриваемые ниже реакции не всегда протекают строго по одному определенному механизму, и часто имеют место смешанные механизмы. Полностью сознавая все эти недостатки, авторы тем не менее пытаются сгруппировать реакции функциональных групп боковых цепей белков по их механизмам. Следует, однако, оговориться, что при всех попытках изменения принятых методов элемент произвола почти неизбежен, что в какой-то степени должно оправдывать авторов, если ими допущены некоторые не совсем строгие обобщения разных реакций. [c.332]

    Многообразие органических соединений объясняется. особенностями строения углеродного атома. Изучение строения и свойств органических молекул становится возможным благодаря стройной системе классификации. Наиболее простыми представителями соединений алифатического, алициклического и ароматического рядов являются углеводороды. Замещая атомы водорода в углеводородах на другие атомы или группы атомов (функциональные группы), можно перейти к различным классам органических соединений данного ряда. Соединения, содержащие одну и ту же функциональную группу, образуют гомологический ряд, представляющий собой ряд веществ, отличающихся друг 01 друга на любое число —СН2-групп. Детальное описание химической реакции называют механизмом реакции. Механизм протекания данной реакции зависит от многих факторов, важнейшими из которых являются природа реагирующих частиц, а также тип разрыва ковалентной связи. Различают гомолитическое и гетеролитическое расщепление связи. [c.316]

    Так же, как и в реакциях распада (см. часть первую), мы приходим к выводу, который другие авторы сделали для других реакций, например хлорирования, о том, что одна и та же кинетическая схема, возможно с уточняющими деталями, справедлива для большего числа реакций, несмотря на различие ж веществ и условий опыта. Это заключение сильно упрощает химическую кинетику. Оно дает основу для рациональной классификации химических реакций, основанной на механизме реакции, что значительно более наглядно, чем классическая классификация, рассматривающая только природу реагентов. Такая новая классификация особенно интересна для инженеров-химиков, так как модель реактора зависит гораздо больше от кинетики реакции, чем от природы реагентов. [c.278]

    Категория химическая реакция в курсе химии средней школы — сложная система понятий, включающая в себя различные стороны классификацию, признаки, сущность и механизмы, закономерности возникновения и протекания, количественные характеристики, методы исследования и практическое использование химических реакций. Развитие всех этих сторон понятия происходит постепенно, на протяжении всего курса химии, включая завершающее обобщение. На семи уровнях изучения химических реакций успешно реализуется проблемное обучение. [c.299]

    При этом следует иметь в виду, что классификация химических процессов по типам кинетических уравнений в большинстве случаев ничего не говорит об истинном механизме изучаемых реакций. Многие сложные по механизму реакции (например, цепные) часто имитируют простой кинетический закон их протекания.— Прим. ред. [c.90]

    Классификация химически реагирующих систем. Обычно целесообразно провести классификацию химически реагирующих систем. Это упрощает в дальнейшем систематизацию математических методов, используемых при синтезах механизмов химических реакций. Первым определим многоцентровой класс химических веществ. К нему относятся молекулярные виды, имеющие многоцентровые связи. К интегральному классу относятся молекулярные виды, ковалентные связи которых определяются в терминах электронных пар. Очевидно, что все. Ве-матрицы для соединений этого класса составлены из элементов, являющихся целыми числа- [c.175]


    Для выбора катализатора необходимо ответить на три основных вопроса какие свойства материала катализатора влияют на протекание реакции, как именно влияют и каково взаимное влияние компонентов катализатора на протекание реакции. Чтобы ответить на эти вопросы, необходимо провести стехиометрический и термодинамический анализы, иметь классификацию реакций, классификацию химических связей между компонентами вещества, модели механизмов процессов, протекающих на поверхности катализатора. Необходимая информацию является неоднородной, или гибридной, по типам подзадач, по методам, используемым для их решения. Некоторые подзадачи формализуемы, существуют алгоритмы их решения, которые должны быть включены в ЭС. [c.251]

    Но для понимания основных закономерностей осуществления химических реакций ключевым является именно изучение механизма. Ведь, с одной стороны, накопление информации о механизме отдельных химических реакций позволит проводить их классификацию и будет способствовать в дальнейшем созданию общей теории осуществления того или иного типа химических реакций (как это произошло, например, с цепными химическими реакциями, с, 104). С другой стороны, выявление механизма конкретной химической реакции позволяет решать важную практическую задачу — выделение наиболее медленной элементарной стадии, которую принято называть лимитирующей, т. е. определяющей скорость всего химического процесса в целом. Так, для реакции [c.52]

    КЛАССИФИКАЦИЯ МЕХАНИЗМОВ ХИМИЧЕСКИХ РЕАКЦИЙ С ГЕОМЕТРИЧЕСКОЙ ТОЧКИ ЗРЕНИЯ [c.472]

    В третьей части книги (гл. 6—8) обсуждаются общие свойства ферментов, вопросы кинетики химических реакций и различные механизмы ферментативного катализа. В гл. 6 достаточно подробно изложены основы ферментативной кинетики, а также рассмотрены механизмы регуляции ферментативных реакций в клетках. В гл. 7 дана рациональная система классификации ферментативных реакций, включающая сведения о различных ферментах и методике их исследования. Гл. 8 посвящена химическим свойствам и специфической роли коферментов, причем эти свойства рассматриваются в связи с типами реакций, описанными в предыдущих главах. В этих главах много справочного материала, и их можно не читать целиком. Для студентов и преподавателей будет совсем нетрудно разобраться в изложенном здесь материале и применять его. При желании эту часть книги можно легко объединить с материалом гл. 2, где обсуждаются свойства белков, углеводов, нуклеиновых кислот и липидов. [c.8]

    Классификация механизмов химических реакций 473 [c.473]

    Классификация механизмов химических реакций 475 [c.475]

    Согласно классификации, предложенной Н. А. Плата с сотр. [4], можно выделить следующие основные отличия реакций полимеров от реакций их низкомолекулярных аналогов в связи со спецификой полимерного состояния вещества I) реакции, присущие только полимерному состоянию вещества распад макромолекул на более мелкие образования или до исходных молекул мономеров и межмакромолекулярные реакции 2) конфигурационные эффекты, связанные с изменением механизма или скорости химической реакции вследствие присутствия в макромолекулах звеньев иной пространственной конфигурации ( эффект соседа ) 3) конформационные эффекты, связанные с изменением конформации макромолекулы в массе полимера или в растворе, после того как прошла химическая реакция 4) концентрационные эффекты, влияющие на изменение скорости реакции вследствие изменения концентрации реагирующих групп около макромолекулы в растворе 5) надмолекулярные эффекты, связанные с распадом или формированием новых надмолекулярных структур в массе или растворе полимера, способных изменить скорость реакции и структуру конечных продуктов. [c.220]

    Классификация механизмов химических реакций 477 [c.477]

    Классификация механизмов химических реакций Элементарная реакция [c.479]

    Для прямых трехцентровых реакций можно ввести более детальную классификацию в зависимости от характера углового распределения продуктов реакции. Если продукты ВС рассеиваются в основном в направлении движения (в системе центра масс) частицы С (рассеяние вперед), то такие реакции называют срывными. Если же продукты рассеиваются в направлении движения молекул АВ ( рассеяние назад), то такие реакции называют рикошетными. Подавляющее большинство прямых трехцентровых химических реакций, обладающих заметной энергией активации, идут по механизму, близкому к рикошетному. Сечения таких реакций невелики и сильно зависят от энергии. [c.87]

    Классификация и номенклатура, строение, физические свойства алкилгалегенидов. Индукционные и мезомерные эф кты в алкщ1- и арилгалогенидах. Методы получения и их практическое использование. Химические свойства алкилгалогенидов. Понятие о кинетике, порядке и молекулярности реакции. Механизм бирщлеку-лярных и мономолекулярных реакций, [c.190]

    Для понимания механизмов химических реакций полисахаридов древесины наибольшее значение имеют системы классификации по двум категориям признаков на основании связывания или удаления структурных элементов по способу разрыва или образования связей. Первый тип реакции (по конечному результату) подразделяется на реакции замешения (8) присоединения (А), имеющего значение у полисахаридов только на промежуточных стадиях элиминирования, или отщепления (Е) перегруппировки. Из этих реакций у полисахаридов наибольшее значение имеют реакции замещения. Кроме перечисленных реакций, в отдельную группу можно выделить окислительно-восстановительные реакции. [c.282]

    Уже на основании немногих приведенных примеров можно судить о пользе понятия степени окисления для классификации и рационального подхода к химическим реакциям. То, что в действительности перенос электрона входит в истинный механизм реакции, лишь в редких случаях не обесценивает этого понятия, так как все воп- [c.203]

    Предлагаемый вниманию читателя учебник написан известным американским биохимиком Д. Мецлером. Автор поставил перед собой цель дать анализ структур, функций и процессов, характерных для живой клетки, с позиций современной биоорганической химии и молекулярной физики. Он концентрирует внимание на всестороннем рассмотрении протекающих в клетках химических реакций, на ферментах, катализирующих эти реакции, основных принципах обмена веществ и энергии. Впервые приведена классификация химических механизмов ферментативных реакций (нуклеофильное замещение, реакции присоединения, реакции элиминирования, реакции изомеризации и др.). В этом наиболее наглядно проявилась особенность рассмотрения биохимических проблем с позиций биоорганика. Обстоятельно изложены многие вопросы, которым прежде не уделяли должного внимания в курсе биохимии. Это касается в частности количественной оценки сил межмолекулярно-го взаимодействия, принципов упаковки молекул в надмолекулярных структурах (самосборка), кооперативных структурных изменений макромолекул и их комплексов. Приведены основные сведения о структуре и функциях клеточных мембран, об антигенах и рецепторах клеточных поверхностей. Весьма подробно рассмотрены также вопросы фотосинтеза, зрения и ряда других биологических процессов, связанных с поглощением света при этом охарактеризована природа некоторых физических явлений, наблюдаемых при взаимодействии света и вещества. [c.5]

    Методика формирования и развития системы понятий о химической реакции. Структура содержания понятия химическая реакция , ее компоненты признаки, сущность и механизмы, закономерности возникновения и протекания, классификация, количественные характеристики, практическое использование и методы исследования химических реакций. Формирование и развитие каждого компонента в их взаимосвязи. Работы Г. И. Шелинского в области методики изучения энергетики химических реакций. [c.323]

    Именйо поэтому при классификации химических реакций используют не число и характер меняющихся связей, а другие более формальные, но зато и более доступные для количественного определения характеристики термодинамические (по изменению энтропии, энтальпии, энергии Гиббса, по обратимости), кинетические (по порядку реакции, молекулярности, механизму), специфические (реакции нейтрализации, гидролиза, этерификации, серебряного зеркала и т. д.). [c.120]

    Рассматривая электронный механизм химических реакций, Ингольд ввел классификацию, различающую электрофильные и нуклеофильные (ядрофильные) вещества. Электрофильными названы [c.224]

    Второе обстоятельство, которое хотелось бы отметить, это то, что в ряде работ, чаще в неявной форме, выполнение требования сохранения орбитальной симметрии связывается с возможностью синхронного (концертного) механизма реакции, т. е. предполагается, что в случае нарушения орбитальной симметрии синхронный механизм реакции не реализуется. Такая точка зрения, вообще говоря, неоправдана, и она справедливо критиковалась в ряде работ (см. например, [269, 270] ). Мы не будем входить здесь в тонкости вопроса, это потребовало бы специального обсуждения классификации химических реакций. Заметим только, что при обсуждении указанного вопроса (и некоторых с ним связанных) важное значение имеет то, что правила сохранения орбитальной симметрии имеют качественный характер, т. е. это правила предостережения о том, что энергия активации может быть велика, но последнее не носит характера категорического заключения и здесь могут понадобиться уже прямые квантовохимические оценки активационных барьеров. Задача расчета энергетического профиля для реакционного пути, запрещенного по правилам Вудворда — Хоффмана, имеет некоторые особен- [c.127]

    Описаны особенности окислительной деструкции кристаллических полимеров и эластомеров в нагруженном состоянии. Подробно рассмотрены надмолекулярные и конформационные эффекты в кинетике окисления ориентированных полиолефинов, а также вопросы их структурной стабилизации, долговечности и механизма разрушения в условиях интенсивного окисления. Показано, как изменяются структура и свойства полимеров под нагрузкой. Основное внимание уделено описанию закономерностей, наблюдаемых при одновременном воздействии на полимер механических напряжений и агрессивных сред. Дана классификация химических реакций полимеров по их чувствительности к растягиваюш,им и сжимающим нагрузкам. [c.254]

    При классификации химических реакций, протекающих в реакторах, учитываются механизм и кинетика химических взаимодействий, а также разнообразные специфические признаки. Например, различают реакции разложения, соединения, замещения и пр. простые и сложные обратимые и необратимые молеку-лярность реакции порядок реакции реакции эндо- и экзотермические реакции гомо- и гетерогенные (гетерофазные) реакции каталитические и некаталитические реакции полимеризации и поликонденсации электро-, фазо-, плазмохимическе реакции цепные, ядерные, термоядерные реакции биохимические реакции реакции, протекающие в диффузионной, кинетической и смешанной областях и т. д. [c.20]

    Согласно классификации, прсдло кеииой Д. И. Орочко, которая приводится здесь только частично, химические реакции по своему механизму могут быть обратимыми, необратимыми, сло>кными и ав-токаталитическими, или цепными. [c.262]

    При всей ценности представленной классификации реакций, ее следует рассматривать только как очень полезный методический прием, который нельзя отождествлять с представлением о механизме химической реакции. Исходное, взятое в реакцию химическое соединение превращается в конечный продукт не одноэтапно, а через ряд промежуточных стадий, на которых образуются, как правило, лабильные и не поддающиеся выделению промежуточные продукты или даже переходные комплексы. Совершенствование экспериментальной техники позволяет исследователям все глубже познавать эти промежуточные этапы химических превращений, по-лучивщих название элементарных стадий химических реакций. Каждая из них имеет свое переходное состояние, энергию активации и скорость, которая может влиять или не оказывать влияния на общую скорость химического превращения. Особенно важны элементарные стадии, определяющие суммарную скорость реакции, которые принято называть лимитирующими стадиями. Реальный механизм химического превращения слагается из меха- низмов элементарных стадий с учетом их роли в суммарной скорости реакции. [c.34]


Смотреть страницы где упоминается термин Классификация химических реакций по механизму: [c.278]    [c.285]    [c.7]    [c.25]   
Смотреть главы в:

Физическая и коллоидная химия 1975 -> Классификация химических реакций по механизму




ПОИСК





Смотрите так же термины и статьи:

Механизм химической реакции

Реакция классификация

Реакция химическая классификация

Химическая механизм



© 2025 chem21.info Реклама на сайте