Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексообразование реактивы

    В связи с тем, что для амперометрического титрования могут быть использованы самые разнообразные химические реакции (осаждения, окисления — восстановления, комплексообразования, и иногда нейтрализации), можно подобрать соответствующий реактив для определения большей части элементов периодической системы. В этом отношении перспективы амперометрического титрования расширяются благодаря введению в практику аналитической химии различных органических реактивов. Преимущества органических реактивов в отношении их чувствительности и избирательности действия общеизвестны. Многие органические реактивы, широко применяемые в аналитической практике, например оксихинолин, диметилглиоксим, а-бензоиноксим (купрон) и ряд других, способны восстанавливаться в определенных условиях на ртутном капельном электроде, другие же, как, например, купферон или тиомочевина, окисляются на платиновом электроде. Если же титрующий реактив неспособен ни восстанавливаться, ни окисляться на индикаторном электроде, то определение можно вести, пользуясь диффузионным током восстановления определяемого иона. Очень большую роль в настоящее время играют в амперометрическом титровании различные комплексоны, значительно увеличившие возможность определения ионов электроотрицательных элементов— кальция, магния, редкоземельных элементов и т. д. [c.22]


    Очевидно, концентрация ионов водорода при колориметрических определениях играет очень важную роль, и при использовании колориметрических методик надо руководствоваться следующими положениями реакции образования окрашенных комплексов металлов с анионами сильных кислот следует проводить в кислых средах если реактив является слабой кислотой, то с повышением pH степень связывания иона металла в комплекс возрастает. Однако при повышении pH раствора надо учитывать ступенчатость комплексообразования, проявление индикаторных свойств реактивом и возможность образования окрашенных комплексов реактивом с посторонними ионами интервалы pH, при которых следует проводить реакцию, как правило, определяют экспериментально. При проведении анализа химик должен строго придерживаться прописи, указанной в методике. [c.26]

    При прибавлении титрованного раствора из анализируемого раствора выделяется осадок соединения определяемого вещества. Широко распространено осаждение солей серебра (аргентометрия, осаждающий реактив А ЫОз). При реакции комплексообразования в качестве осаждающего реактива применяется Hg(NOз)2 (меркурометрия). [c.156]

    В некоторых менее изученных случаях изменение окраски вызывается другой причиной. Реактив может представлять собой двухосновную кислоту НгК, причем к реакции комплексообразования способен как ион кислой соли НН , так и свободный анион В кислой среде реактив НгН диссоциирует преимущественно по первой ступени  [c.123]

    Однако, несмотря на некоторые ограничения, метод изомолярных серий в ряде случаев успешно применяется для определения состава экстрагируемого комплексного соединения [297—299]. Н. П. Комарь доказал, что этим методом можно определить состав экстрагируемого комплекса и в более сложных случаях, когда вместе с комплексом экстрагируется светопоглощающий реактив, ассоциирующий в неводном растворителе, или когда в водной фазе протекают процессы ступенчатого комплексообразования [300]. [c.190]

    Рений (VII) восстанавливается при взаимодействии с дифенилкарбазидом, и образующийся рений (V) реагирует с продуктом окисления дифенилкарбазида — дифенилкарбазоном. Таким образом, в этом случае, как и в некоторых других, окислительно-восстановительным агентом является используемый реактив. Взаимодействие элементов с дифенилкарбазидом вообще включает как необходимую стадию окисление этого реактива, ибо активным в отношении комплексообразования является только дифенилкарбазон. Дифенилкарбазид с катионами металлов не взаимодействует. Окислителем служит не только кислород воздуха, но в ряде случаев и катионы металлов [483]. [c.164]


    Если определяемое вещество само не участвует в окислитель-но-восстановительном процессе на электроде, то можно подобрать такой реактив, органическое соединение, которое или является восстановителем, или образует какое-либо соединение с определенным ионом. Этот реактив может принимать участие в реакциях осаждения, комплексообразования или нейтрализации с определяемым ионом. Методы амперометрического титрования предложены Я. Гейровским в 1927 г. Амперометрическое титрование проводят на полярографической установке с капельным ртутным катодом и неполяризуемым электродом сравнения. [c.570]

    Кулонометрическое титрование с использованием реакций кислотно-основных, комплексообразования или осаждения. Допустим, что реактив А приготовляется электролизом по реакции С — е — А, а за ем химически реагирует с определяемым веществом В  [c.527]

    Бескислородная соль. Белый, негигроскопичный. При хранении на свету желтеет. Хорошо растворим в воде, гидролиза нет. Типичный восстановитель. Водный раствор KI хорошо растворяет 2 за счет комплексообразования. Качественные реакции — см. 35 Применяется как компонент электролитов в химических источниках тока, реактив в фотографии, лекарственное средство, реагент в аналитической химии. [c.129]

    Обнаружено ступенчатое комплексообразование сурьмы (V) с димеркаптотиопиронами при этом образуются два соединения в молярном соотнощении сурьма (V) реактив = 1 1 и 1 5. [c.73]

    Ионы палладия и платины, как ионы благородных металлов, обладают сильными окислительными свойствами. Так, Р(1+2 на холоду окисляет СО до углекислого газа (чувствительная реакция открытия СО). Из растворов РЮЬ при действии избытка восстановителей выделяется платина. Ионы благородных металлов характеризуются исключительно выраженной способностью к комплексообразованию. Из большого числа комплексных соединений платины в лабораторной практике находит применение, как реактив на ион калия, платинохлористоводородная кислота. Образующийся при этой реакции хлороплатинат калия — малорастворимое вещество, кристаллизующееся в виде микроскопических желтых октаэдров. Этой реакцией пользуются в микрокристаллоскопии — методе определения вещества по форме кристаллов, наблюдаемых в микроскоп. [c.306]

    Чистота реактива проверяется хроматографичсски на бумаге, а концентрация основного вещества—титрованием солями циркония в 1 и. соляной кислоте. Исходя из стехиометрического соотношения реакции комплексообразования (реактив 2г=1 1), рассчитывают процентное содержание основиого вещества (на кислоту или динатриевую соль). [c.107]

    Хелаты образует енольная форма реагента, поэтому енолизация является необходимой предпосылкой для комплексообразования. Другой тип тауто-мерного равновесия существует у реагентов с о-нитрозофенильной группировкой. Среди таких реагентов прежде всего следует назвать 1-нитрозо-2-нафтол (реактив Ильинского)  [c.171]

    Другой такой же старый "классический" метод — это титриметри-ческий анализ. Он основан на измерении объемов реагирующих растворов, причем концентрация раствора реактива должна быть точно известна. В титриметрическом анализе реактив приливают к исследуемому раствору только до того момента, когда прореагируют эквпввшент-ные количества веществ. Определяют этот момент с помощью индикаторов или другими с Юсобами. Зная концентрацию и объем реактива, израсходованного на реакцию, вычисляют результат определения. Тан, ио количеству израсходованной щелочи находят содержание кислоты в анализируемом материале. Большое значение в титриметри-ческом анализе имеют методы, основанные на реакциях комплексообразования (гл. II). [c.163]

    Маскирующие реагенты часто используют в методах разделения и концентрирования. Применение реактивов с широким диапазоном действия в экстракционных методах, таких, как оксин, дитизон, диэтилдитиокарбамат, неизбежно связано с использованием маскирующих средств, при помощи которых предотвращается экстракция мешающих ионов. Экстракцию Си + диэтилдитиокар-баматом можно провести в присутствии Ni + и РЬ +, которые также экртрагируются реактивом, если предварительно они маскируются при помощи ЭДТА, образующим менее устойчивые комплексы с u2 чем используемый реактив. В ионообменной хроматографии комплексообразование является широко используемым средством для изменения заряда иона, а следовательно, и для создания возможности участия в ионном обмене на ионитах определенного типа. Так, Ре " под действием разбавленной НР превращается в анионный комплекс РеРе , который можно легко отделить от других катионов, таких, как Ад+, Мп +, РЬ " [c.426]

    Окраска хелатных соединений зависит от свойств как металла, так и органического реактива. В большинстве названных выше случаев (аминоацетаты, пирокатехинаты, днэтилдитиокарбаматы и др.) реактив не имеет цепи сопряжения. Поэтому, независимо от прочности связи, окрашены комплексы только таких металлов, которые имеют хромофорные свойства, — медь, железо, ванадий и др. (см. гл. 4). Для реактивов, которые имеют цепь сопряжения, связанную с хелатным кольцом, характерно образование окрашенных комплексов со всеми металлами, способными к комплексообразованию с данным реактивом. Например, в отличие от диэтил-днтиокарбаматов цинка, кадмия и других, интенсивно окрашены дитизонаты этих (и других) металлов. [c.270]


    Таким ооразом, вполне допустимо строение, при котором ион металла связан С шестью отдельными атомами ЭДТА (гексадентатный реактив) и в системе имеется пять пятичленных колец. Возможно, что это изменение формы реактива в связи с образованием комплекса обусловливает известный для ряда случаев комплексообразования Ме — ЭДТА большой энтропийный эффект, который всегда связан с упорядочением строения. [c.271]

    Развитие этой области аналитической химии шло по линии накопления новых фактов. Глубокого сравнения реактивов данной подгруппы не производилось. Поэтому применение, выбор и оценка реактивов в значительной степени случайны. Очень слабо изучены сравнительные спектрофотометрические характеристики. Между тем свободные реактивы представляют собой азокрасители и азометиновые красители, которые, как известно, интенсивно окрашены. Поэтому нередко полоса поглощения реактива сильно накладывается на полосу поглощения комплекса. В ряде случаев (например, эриохром сине-чер-ный и т. п.) спектры поглощения реактива и комплекса представляют собой почти симбатные кривые с небольшим сдвигом при комплексообразовании. Для визуального применения в качестве металлохромных индикаторов при титровании это обстоятельство не имеет большого значения. Глаз весьма чувствителен к оттенкам цвета, поэтому он хорошо отмечает изменение цвета индикатора. Однако в фотометрическом анализе всегда необходимо прибавлять более или менее значительный избыток реактива. Поэтому если реактив характеризуется малой величиной ДА. (Хмен— не)> а общее поглощение (или Бмакс) реактива и комплекса близки, встречаются серьезные затруднения. В области спектра, отвечающей Ямек (максимум спектра поглощения комплекса), слишком велико поглощение реактива, иначе говоря, слишком мало отношение емек епп (рис. 97). [c.297]

    Метод основан на образовании практически иедис. оциирован-ной сулемы. После достижения точки эквивалентности в растворе появляется некоторое количество ионов Hg(II), которое можно фиксировать соответствующими индикаторами. Для индикации конечной точки титрования при меркуриметрическом титровании предложен ряд индикаторов. Самым распространенным является дифенилкарбазон. С ионами Hg(II) реактив дает растворимое окрашенное в красно-фиолетовый цвет внутрикомплексное соединение. Недостатком индикатора является то, что для получения точных результатов необходимо проводить холостое титрование для внесения поправки на комплексообразование образующейся сулемы с избытком ионов ртути. Вследствие этого определение хлорид-ионов чаще всего проводят в спиртовой среде. [c.40]

    На первом этапе исследования необходимо убедиться в том,, что в результате реакции комплексообразования образуется только одно комплексное соединение. Для этого изучают спектры поглощения растворов, содержащих ионы металла и реактив-компле-ксообразователь в различных соотношениях. Обычно готовят серию растворов, в которых См = onst, а С а непрерывно возрастает. Если кривые поглощения этих растворов остаются подобными, это свидетельствует об образовании в растворах преимущественно одного комплекса. Затем исследуют кривые поглощения растворов (с заданным и постоянным соотношением См С а ) при различных pH среды. Эти кривые также должны быть подобны, если образуется только одно комплексное соединение МАп . [c.169]

    Скорость осаждения германия резко снижается в присутствии винной кислоты и ионов фтора. Влияние последних устраняется комплексообразованием с алюминием, что используется для открытия германия в присутствии мышьяка к раствору добавляют реактив и NaF, в результате чего осаждается селенид мышьяка (П1), который отфильтровывают, и затем к фильтрату добавляют соль алюми ния и определяют германий. Таким способом можно обнаружить германий, если содержание его в пробе составляет 0,05 мг, а содержание мыльяка 50 мг (предельная концентрация германия 1,3-10 Мешаюг проведепию реакции u(I, II) и SeO . Реакция эта очень интересна, но мало изучена. [c.293]

    Большая роль в развитии учения о комплексных соединениях принадлежит русским и советским ученым Л. А. Чугаеву, И. И. Черняеву, Хлопину, А. А. Гринбергу и др. Л. А. Чугаев (1873—1922) известен своими работами в области аммиачных соединений платины реактив Чугаева (диметилглиоксим) применяется для качественной реакции на никель (комплексообразование) им osflaTia школа современных химиков-комплексников им организован Институт платины (ныне ИОНХ АН СССР). [c.280]


Смотреть страницы где упоминается термин Комплексообразование реактивы: [c.101]    [c.181]    [c.88]    [c.37]    [c.132]   
Методы аналитической химии Часть 2 (0) -- [ c.45 ]

Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.44 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексообразование

Комплексообразованне



© 2025 chem21.info Реклама на сайте