Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура немолекулярная

    Твердое состояние веществ с немолекулярной структурой [c.138]

    Для немолекулярных кристаллов понятие молекулы лишено смысла. Для них формой существования химического соединения в твердом состоянии является фаза. Поэтому фаза — носитель всех физических, физико-химических и химических свойств вещества, кристаллизующегося в координационной решетке, т. е. свойства вещества немолекулярной структуры зависят от состава и химического строения фаз. В этом заключается фундаментальность понятия фазы в современной химической атомистике. Однако понятие фазы здесь употребляется уже не в термодинамическом, а в несколько ином смысле. Если с термодинамической точки зрения понятие фазы можно применять только к равновесным системам , то фаза как носитель свойств вещества с немолекулярной структурой—это однородная по составу и свойствам часть системы. При этом подразумевается, что фаза может быть и метастабильной (неравновесной), то тем не менее она вполне характеризует свойства объекта. [c.21]


    Для веществ с немолекулярной структурой характерен переменный состав,, зависящий от условий получения и предыдущей обработки. [c.19]

    Исследованиями ученых многих стран установлено, что к соединениям переменного состава относятся не только оксиды, но н субоксиды, халькогениды, силициды, бориды, фосфиды, нитриды, многие другие еорганические вещества, а также органические высокомолекулярные соединения. Во всех случаях, когда сложное вещество имеет молекулярную структуру, оно представляет собой соединение постоянного состава с целочисленными стехиометриче-скими индексами. Некоторые ионные кристаллы и даже атомные кристаллы и металлы могут также подчиняться законам стехиометрии. Но в случае немолекулярных кристаллов, как отмечает Б. Ф. Ормонт, уже не молекула, а фаза т. е. коллектив из Л/о (числа Авогадро) атомов, определяет свойства кристаллической решетки . Он предлагает для подобных веществ расширить формулировку закона постоянства состава Если... в твердом агрегатном состоянии соединение не имеет молекулярной структуры, то в зависимости от строения атомов и вытекающего отсюда строения фазы и характера химической связи в ней состав соединения и его свойства могут сильно зависеть от путей синтеза. Даже при одном и том же составе свойства могут сильно зависеть от условий образования . Б. Ф. Ормонт подчеркнул необходимость исследования зависимости условия образования—состав — строение — свойства,— направленного. на установление связи между условиями образования, химическим и фазовым составом системы, химическим составом и строением отдельных фаз и их свойствами. Нетрудно заметить, что добавление к обычной формуле, закона постоянства состава слов состав срединения зависит от условий его образования ,— лишает закон постоянства состава его смысла. В то же время указание на важность изучения в связи с проблемой стехиометрии не только состава, но и строения твердых веществ представляется очень существенным. [c.165]

    Ограниченный характер и границы применимости стехиометрических законов химии. Современная формулировка стехиометрических законов. При образовании подавляющего большинства неорганических соединений их состав может быть переменным в пределах области гомогенности. Постоянный и неизменный химический состав наблюдается только для молекул (например, N1 3, 502 и т. п.), а также кристаллов с молекулярной структурой. А последних среди твердых неорганических веществ очень мало, и они представляют исключения (менее 5%)- Таким образом, молекулы являются одной из форм существования химических соединений, но не единственной. Для типичных твердых неорганических простых веществ и соединений характерна немолекулярная форма существования вещества. [c.24]


    Для соединений с немолекулярной структурой массовые части одного элемента, соединяющегося с одной и той же массовой частью другого, могут относиться между собой как дробные числа. [c.20]

    Твердые фазы немолекулярной структуры представляют собой твердые тела с координационной структурой (металлы, полупроводники и диэлектрики). Химическая связь в них имеет свои особенности и описывается с позиций так называемой зонной теории. Для металлов зонной теории предшествовала модель свободных электронов. [c.129]

    Стехиометрические законы химии — постоянства состава, эквивалентов и кратных отношений — были в свое время сформулированы применительно к молекулам, а потому справедливы для молекулярной формы существования вещества. Для немолекулярных структур постоянство состава и вытекающие из него следствия не являются уже критерием образования химических соединений. Поэтому в настоящее время стехиометрические законы химии формулируются с учетом единства молекулярной и немолекулярной форм существования вещества. [c.24]

    Вы, вероятно, знаете, что лишь немногие химические элементы гелий, неон, аргон, криптон и ксенон — при обычных условиях находятся в состоянии одноатомного пара. Свободные атомы большинства элементов стремятся образовать более сложные системы — молекулы или немолекулярные кристаллы. Следовательно, у этих элементов электронная структура свободных атомов обладает лишь относительной устойчивостью (например, в состоянии крайне разреженного пара), тогда как при сближении атомов образуются системы с более стабильной электронной конфигурацией. Это явление носит название образования химической связи. [c.168]

    Для веществ немолекулярной структуры не следует писать структурные формулы, так как последние искажают кристаллохимическое строение. Например, в кристаллических структурах кар- [c.26]

    Для соединений с немолекулярной структурой массы реагирующих элементов могут отличаться от значений их химических эквивалентов. [c.20]

    Для твердых веществ с немолекулярной структурой понятие молекулы лишено смысла. Формой существования таких веществ выступает твердая фаза. Она является носителем всех свойств вещества с немолекулярной структурой, которые зависят от ее состава и химического строения. [c.138]

    Таким образом, современная химия — это не только химия микрочастиц (атомов, молекул, ионов, радикалов и т. п.), но и химия макротел. При этом органические макротела характеризуются молекулярной структурой, а большинство неорганических — не имеют молекулярной структуры. В последнем случае макротела состоят либо из атомов одного и того же химического элемента (простое вещество), либо из атомов разных элементов (химическое соединение). Признание немолекулярной формы существования твердого вещества приводит к необходимости пересмотра некоторых положений химической атомистики, модернизации основных законов и понятий, справедливых для пневматической (газовой) химии. [c.9]

    Соединения постоянного и неременного состава. Дальтониды и бертоллиды. Стехиометрические соотношения компонентов, образующих соединение, соблюдаются только в парообразном состоянии, в молекулярных кристаллах и жидкостях. При образовании твердых фаз с координационной структурой эти соотношения не соблюдаются. В настоящее время доказано, что большинство твердых веществ с немолекулярной структурой могут образовывать твердые растворы со своими компонентами, т.е. существовать в некотором интервале составов. Так, на диаграмме состояния (см. рис. 103) промежуточная фаза A B образует твердые растворы как с одним, так и с другим компонентом. Аналогично этому существуют области гомогенности (области твердых растворов а и /3) на основе компонентов А и В. С термодинамической точки зрения, образование ограниченных твердых растворов всегда энергетически выгодно. Поэтому отсутствие экспериментально установленной области гомогенности у определенного ряда соединений с координационной структурой (так называемые линейные фазы, которые на диаграмме состояния отображаются вертикальной линией — ординатой соответствующего состава) свидетельствует лишь о недостаточной чувствительности современных методов физико-химического исследования. Очевидно, истинно линейными могут быть только твердые фазы с молекулярной структурой. [c.204]

    Модели строения атома. В химии своеобразными элементарными частицами являются атомы, из которых построены все химические индивиды. Громадное разнообразие химических соединений обусловлено различным сочетанием атомов химических элементов в молекулы и немолекулярные вещества. Способность же атома вступать в химические соединения, его химические и физические свойства определяются структурой атома. Отсюда для химии первостепенное значение имеет внутреннее строение атома и в первую очередь структура его электронной оболочки. Поэтому Энгельс писал, что химия — физика атомов. [c.31]

    Для веществ с немолекулярной структурой — формульных единиц. [c.257]

    В связи с этим в современную формулировку закона постоянства состава следует внести уточнение. Состав соединений молекулярной структуры (см. гл. I, 1) является постоянным независимо от способов получения. Состав же соединения с немолекулярной структурой зависит от условий получения [например, состав оксида титана (И) — от температуры и давления кислорода, применяемых при его синтезе]. [c.18]


    Состав соединений молекулярной структуры, т. е. состоящих из молекул, является постоянным независимо от способа получения. Состав же соединений с немолекулярной структурой (с атомной, ионной и металлической решеткой) не является постоянным и зависит от условий получения. [c.22]

    Химическая связь между молекулами у вещества с молекулярной структурой менее прочная, чем между атомами, поэтому их температуры плавления и кипения сравнительно низкие. У веществ с немолекулярной структурой химическая связь между частицами весьма прочная, поэтому их температуры плавления и кипения высокие. Современная химия изучает свойства микрочастиц (атомов, молекул, ионов и др.) и макротел. [c.9]

    Подавляющее большинство неорганических веществ в условиях комнатной температуры и атмосферного давления — твердые вещества с немолекулярной структурой. Поэтому на первый взгляд может показаться, что теория химического строения Бутлерова неприменима для типичных неорганических соединений. На самом же деле такой вывод является преждевременным. Дело в том, что основная идея Бутлерова о взаимосвязи между химическим строением и свойствами остается в силе и для веществ, не имеющих молекулярной структуры. Только для последних вместо химического строения вводится понятие кристаллохимического строения, [c.20]

    Несмотря на очевидность различия между этими понятиями, даже в учебной и научной литературе допускают их смешение, употребляя например, такие выражения, как "элементарный азот", "взаимодействие элементарного цинка с кислотой" и т.п., хотя речь идет о простых веществах, а не об элементах. При образовании простых веществ из элементов возникают объекты, характеризующиеся качественно иным набором свойств, чем изолированные атомы. Даже в тех случаях, когда в результате взаимодействия атомов образуются газообразные молекулы, их свойства существенно иные. Например, хорошо известно, что атомарный азот принадлежит к числу наиболее активных неметаллов, в то время как в молекулярной форме простое вещество — азот — характеризуется малой химической активностью. Это обусловлено большим значением энергии химической связи в молекуле азота. По той же причине все газы в атомарном состоянии существенно более активны химически, чем их молекулы. Еще резче качественное отличие простого вещества от соответствующего химического элемента при образовании конденсированной фазы с немолекулярной структурой. Конденсированное состояние характеризуется свойствами, которые принципиально неприменимы к атомам, например твердость и температура плавления (для кристаллов), вязкость и температура кипения (для жидкостей), электрическая проводимость и т.п. [c.240]

    Большинство простых веществ существует не в виде молекул, а представляет собой более сложные макроскопические образования с немолекулярной структурой. Характерной особенностью этого состояния является агрегация большого числа атомов (порядка постоянной Авогадро) в едином ансамбле, в результате чего и возникают новые свойства, о которых нельзя говорить применительно к молекулам. Так, молекулярный пар натрия Каз (г), существующий при высоких температурах, принципиально отличается от одноатомного пара тем, что здесь возникает ковалентная <т<,- -связь (как в молекуле Из). В силу насыщенности ковалентной связи в молекуле Ка2 (г) и отсутствия межмолекулярного взаимодействия натрий в парообразном состоянии обладает диамагнетизмом (в отличие от одноатомного пара) и является диэлектриком. В то же время при конденсации пара натрия в жидкость и ее кристаллизации возникает простое вещество с металлической связью и всеми характерными для металла свойствами парамагнетизмом, высокой электрической проводимостью, пластичностью и т.п. [c.240]

    Для веществ с кристаллической (немолекулярной) структурой относительную молекулярную массу рассчитывают для условной молекулы, состав которой соответствует простейшей формуле (см. 1.1). [c.17]

    В зависимости от природы частиц, из которых построено вещество, различают вещества с молекулярной и немолекулярной структурой (см. гл. 6). Практически все органические вещества (т. е. подавляющее большинство известных веществ) состоят из молекул. Среди неоргани- [c.6]

    Большинство твердых веществ имеет кристаллические решетки, образованные атомами или ионами выделить отдельные молекулы в таких структурах нельз.ч. Такие вещества обычно называют веществами с немолекулярной структурой. Немолекулярную структуру имеют многие вещества в кристаллическом состоянии, например металлы, кислоты, гидроксиды, соли. Для веществ немолекулярного строения принято записывать формулу условной молекулы, которая показывает соотношенне числа атомов в веществе. Например, химическая формула хлорида натрия Na l. Важный признак кристаллических веществ — наличие определенной температуры плавления. [c.15]

    Далеко не все вещества имеют молекулярную структуру. К соединениям с немолекулярной структурой относятся ионные соединения в твердом состоянии и з расплаве, иапример Na l, K2SO4. Они состоят из положительных и отрицательных иоиов. [c.199]

    Из сказанного можно сделать вывод, что для многих простых и сложных веществ в твердом агрегатном состоянии молекулярная форма существования не характерна. Такие вещества образуют различного рода немолекулярные структуры. Однако необходимо иметь в виду, что в немолекулярных структурах правила валентности и, следовательно, соотношения количеств взаимодействующих атомов, вытекающие из этих правил, соблюдаются так же, как и в молекулах. Поэтому часто формулы веществ с немолекулярной структурой записываются в виде молекул, например, ЗЮз, А Оз, ЫаС1, СаСЬ, N82804 и т. д. Но поскольку подобные молекулы не существуют, то в применении к ним лучше пользоваться термином формульная масса вместо молекулярная масса . Напри- [c.97]

    Законы постоянства состава, простых кратных отношений эквивалентов, простых объемных отнощений известны как стехио-метрические. Они строго применимы для в еществ с молекулярным строением (молекул, кристаллов с молекулярной структурой). Для веществ с немолекулярной структурой постоянство состава и вытекающие из него следствия не являются критерием образования химических соединений. К ним относятся практически все соединения в твердом состоянии, так как за счет дефектов их рещ ток для них характерно отклонение состава от стехиометрии. [c.19]

    У веществ с молекулярной структурой химическая связь между молекулами менее прочна, чем между атомами внутри молекулы. Поэтому они имеют сравнительно изкие температуры плавления и кипения. У веществ с немолекулярной структурой химическая связь между частицами весьма прочиа. Поэтому они имеют высокге температуры плавления и кипения. [c.6]

    Подавляющее большинство неорганических веществ в условиях, комнатной температуры и атмосферного давления — твердые вещества с немолекулярной структурой. Для них твердое состояние, наиболее устойчиво и энергетически выгодно. Поэтому для превращения их в жидкость или пар необходимо затратить энергию (теплоты плавления и испарения). У таких веществ молекулы (например, молекулы Na в парах), по существу, представляют собой возбужденное состоя)ше вещества, с большим запасом внутренней энергии. В то же время химия должна в первую очередь заниматься изучением устойчивого нормального состояния вещества. В твердых неорганических веществах, как правило, отсутствуют молекулы. Поэтому на первый взгляд может показаться, что теория химического строения Бутлерова неприменима для типичных неорганических соединений. На самом же деле такой вывод является преждевременным. Дело в том, что основная идея Бутлерова о взаимозависимости между химическим строением и свойствами остается в силе и для веществ, не имеющих молекулярной структуры. Только для последних вместо химического строения вводится понятие крпсталлохимического строения. [c.26]

    У веществ с молекулярной структурой ХНМПЧеСКаЯ СВЯЗЬ МбЖДУ МО лекулами менее прочна, чем между атомами внутри. молекулы. Поэтому они имеют сравнительно низкие температуры плавления и кипения. У веществ с немолекулярной структурой химическая связь между [c.12]

    Закон кратных отношений, как и закон постоянства состава и эквивалентов, справедлив только для соединений молекулярного состава. Для соединений немолекулярной структуры массы одного элемента, приходящиеся на одну и ту же массу другого, могут относиться между собой как дробные числа. Например, в оксидах титана переменного состава от до Т10,,я- Однако у оксидов стехиометриче-ского состава Т10, Т120а и Т102 оно составит 2 3 4. [c.22]

    Направленность ковалентной связи. Направленность ковалентной связи является тем главным свойством, от которого зависит структура молекул и немолекулярных химических соединеЬий. Пространственная направленность ковалентной связи определяет химическое и кристаллохимическое строение вещества. Поэтому нередко МВС называют методом направленной валентности. [c.79]

    Систематизируя кис.лородные соединения элементов по доминирующему типу химической связи, можно выделить три основных типа соединений с металлической, преимущественно ионной и ковалентной связью. К характеристическим соединениям относятся только оксиды, подчиняющиеся правилу формальной валентности. В характеристических оксидах доминирующим типом связи являет ся ионно-ковалентная, поэтому их можно подразделить на два типа с преимущественно ионной и преимущественно ковалентной связью. Последние, в свою очередь, по структурному признаку подразделяются на координационные и молекулярные (например, SiO . и СО2). Ионные оксиды всегда имеют координационную структуру. Ионно-ковалентное взаимодействие характерно и для анионоизбыточных кислородных соединений, однако они обладают особыми свойствами и обычно рассматриваются отдельно. Такую же специфическую группу составляют и металлоподобные оксиды. Принимая во внимание зависимость типа кристаллической структуры оксидов от характера химической связи, можно сделать вывод, что в немолекулярных структурах с ковалентной связью координационные числа не должны превышать 4, а в ионных кристаллических решетках реализуются более высокие координационные числа. Так, в кубической структуре Si02 (/i -кристобалит) к.ч (Si) 4, а к.ч. (О) 2 (рис. 130), в структуре Т1О2 (рутил) к.ч. (Ti) [c.266]


Смотреть страницы где упоминается термин Структура немолекулярная: [c.129]    [c.27]    [c.61]    [c.353]    [c.8]    [c.18]    [c.20]    [c.58]    [c.7]   
Химия для поступающих в вузы 1985 (1985) -- [ c.11 ]

Химия для поступающих в вузы 1993 (1993) -- [ c.9 ]




ПОИСК





Смотрите так же термины и статьи:

Твердое состояние веществ с немолекулярной структурой

Химическая связь в твердых фазах немолекулярной структуры



© 2025 chem21.info Реклама на сайте