Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллиты, понятие

    Для немолекулярных кристаллов понятие молекулы лишено смысла. Для них формой существования химического соединения в твердом состоянии является фаза. Поэтому фаза — носитель всех физических, физико-химических и химических свойств вещества, кристаллизующегося в координационной решетке, т. е. свойства вещества немолекулярной структуры зависят от состава и химического строения фаз. В этом заключается фундаментальность понятия фазы в современной химической атомистике. Однако понятие фазы здесь употребляется уже не в термодинамическом, а в несколько ином смысле. Если с термодинамической точки зрения понятие фазы можно применять только к равновесным системам , то фаза как носитель свойств вещества с немолекулярной структурой—это однородная по составу и свойствам часть системы. При этом подразумевается, что фаза может быть и метастабильной (неравновесной), то тем не менее она вполне характеризует свойства объекта. [c.21]


    I. общее представление о строении кристаллов. Понятие кристалл ассоциируется с представлением о многограннике определенной формы. Однако кристаллические вещества характеризуются не только этим признаком. Основной особенностью кристаллических тел является их анизотропия, или векториальность свойств - неодинаковость свойств кристалла (прочность на разрыв, теплопроводность, сжимаемость и др.) в разных направлениях. [c.146]

    Другое обстоятельство, которым нам придется воспользоваться в настоящей работе, — это уже установленная на примере известкового шпата и кварца справедливость закона Ома в кристаллах, несмотря на видимые противоречия и аномалии. Пропорциональность между плотностью тока и электрической силой позволит нам воспользоваться для количественного описания электрических свойств кристалла понятием электропроводности. Методами наблюдения проводимости, предложенными еще в 1887 г. П. и Ж. Кюри, при известных условиях можно воспользоваться для измерения электропроводности. В статье об электропроводности кварца подробно изложены способы измерений применительно к различным случаям, встречающимся на практике. В настоящем исследовании оказалось возможным ограничиться простейшим из таких приемов. [c.128]

    Параллельно развивалась систематика органических кристаллов. Понятие структурного типа, лежавшее в основе классифи- [c.135]

    Аномальные смешанные кристаллы. Понятие об изоморфизме, несмотря на очень большую давность его происхождения, в настоящее время нельзя однозначно охарактеризовать. Согласно первоначальным представлениям [ ], под изоморфизмом понимались химическая аналогия двух веществ, одинаковый химический тип строения, а также сходство кристаллических форм и связанная с этим способность двух веществ к образованию смешанных кристаллов. [c.324]

    Первые работы Дж. Гильдебранда связаны с обоснованием закономерностей идеальных растворов. Им показано, что если при образовании раствора теплота растворения кристаллов соответствует скрытой теплоте плавления и растворы образуются без изменения суммы объемов, растворы следуют закону Рауля [61]. Рассматривая механизм внутримолекулярного взаимодействия в растворе, Дж. Гильдебранд ввел понятие о внутреннем давлении. Жидкости с равными внутренними давлениями образуют идеальный раствор. Жидкости с близкими внутренними давлениями и близкой полярностью взаимно растворимы в широком диапазоне концентраций. Для оценки энергии связи сил межмолекулярного взаимодействия им использованы величины скрытой теплоты испарения. Растворы с дисперсионными силами взаимодействия, у которых теплоты, смешения имеют низкие значения, а изменение энтропии происходит по закону идеальных газов, были выделены в отдельный класс, полу- [c.213]


    Аномальные смешанные кристаллы. Понятие об изоморфизме, несмотря на очень большую давность его происхождения, в настоящее время нельзя однозначно охарактеризовать. Со  [c.239]

    Трансляционную симметрию называют также симметрией решетки, поскольку именно этот тип симметрии характерен для решетки кристалла. Кристаллическая решетка составляется из точек, расположенных в вершинах всех элементарных ячеек кристалла, как показано на рис. III.2. Она определяется размером и формой элементарной ячейки и не зависит от конкретной природы того, что в ней находится. Таким образом, существует четкое различие между кристаллической решеткой, которая представляет собой всего лишь упорядоченное расположение точек, обладающее трансляционной симметрией кристалла, и кристаллической структурой, которая полностью показывает расположение атомов в кристалле. Понятие решетки важно для теории рентгеноструктурного анализа (приложение IV). f  [c.760]

    С вопросом о молекулярном весе растворителя сталкиваются при обсуждении равновесия между растворителем в растворе и растворителем в состоянии идеального газа. Для последнего состояния молекулярный вес растворителя можно экспериментально определить, чего нельзя сделать для растворителя в (конденсированном) растворе. Для кристаллов понятие молекулы как отдельной частицы, ведущей независимое от других частиц существование, вообще теряет смысл. Вспомним, например, ионную решетку хлористого натрия. [c.356]

    В случае немолекулярных кристаллов понятие молекул лишено физического смысла. Электронная плотность перераспределена. Уже не молекула, а фаза, т. е. коллектив из No (числа Авогадро) [c.246]

    В химии по традиции применяют к координационным кристаллам понятие о координационных сферах, как это было принято еще в коор- [c.98]

    В случае немолекулярных кристаллов понятие молекул лишено физического смысла. Электронная плотность перераспределена. Уже не-молекула, а фаза, т. е. коллектив из (числа Авогадро) атомов, определяет свойства кристаллической решетки. Это один из ярких примеров перехода количества в качество. Ничтожные примеси влияют [c.457]

    Рассматривая механизм химических реакций, следует прежде всего иметь в виду, что характер взаимодействия существенно зависит от агрегатного состояния реагентов и продуктов. Реагенты и продукты, вместе взятые, образуют так называемую физико-химическую систему. Совокупность однородных частей системы, обладающих одинаковыми химическими составом и свойствами и отделенных от остальных частей системы поверхностью раздела, называют фазой. Например, если в стакан с водой внести кристаллы поваренной соли, то в первый момент образуется двухфазная система, которая превратится в однофазную после растворения соли. Смеси газов при нормальных условиях однофазны независимо от их природы. Жидкие системы могут быть однофазны (вода и спирт) или многофазны (вода и бензол, вода и ртуть). Системы, состоящие из одной фазы, называются гомогенными, а системы, содержащие несколько фаз,— гетерогенными. Соответственно этому в химии введено понятие о гомогенных и гетерогенных реакциях. Реакцию называют гомогенной, если реагенты и продукты составляют одну фазу. Это справедливо для так называемых обратимых химических реакций (с. 60)  [c.53]

    Все изложенные соображения относятся лишь к грани кристалла определенного символа. При катодном выделении металлов, как правило, образуются поликристаллические осадки, т. е. осадки, состоящие из большого числа связанных между собой мелких кристаллов (или зерен) с гранями различных символов, что осложняет картину процесса. Одно из этих осложнений связано с тем, что грани различных символов растут с неодинаковой скоростью, и характер осадка изменяется в процессе электролиза. Для характеристики катодных осадков наряду с кристаллографической структурой используются поэтому и такие понятия, как структура роста, текстура и характер осадка. [c.343]

    Понятие структура в случае сплавов объединяет совокупность целого ряда свойств сплава, а именно 1) микроструктуру 2) состав фаз 3) напряжения и искажения в кристаллической решетке каждой из фаз 4) ориентацию кристаллов и т. д. [c.417]

    Металлическое состояние, казалось бы, трудно описать, пользуясь понятиями комплексной химии. Однако, согласно простейшим представлениям Друде [11], металлический кристалл состоит из правильной решетки положительных ионов (ядер), окруженных облаком валентных электронов, играющих роль как бы отрицательных ионов ионных кристаллов. [c.30]

    Межъядерные расстояния в молекулах можно оценить разными методами, в первую очередь сравнением в рядах сходственных соединений. Часто длину связи оценивают как сумму так называемых ковалентных радиусов атомов гдв = Ra + Rb. Так как изолированных атомов в молекуле не существует, естественно, что понятие атомных радиусов является чисто эмпирическим. Разделив пополам межъядерное расстояние в гомонуклеарных двухатомных молекулах I2, ВГа, I2 и других или в кристаллах элементов С, Si и др., определяют радиусы атомов С1, Вг, I, С, Si и др. В эти величины вводят эмпирические поправки, как, например, в Rh или Rp, для лучшего согласия с опытными значениями где. Так получена система ковалентных радиусов Полинга (табл. 8). Для соединений с заметной по- [c.104]


    Аналогично соотношению (1.51) определяем понятие субстанциональной производной энтропии гетерогенной смеси, в которой происходит рост и образование кристаллов (гомогенным, гетерогенным путем)  [c.61]

    Введем понятие мгновенной и средней скорости изменения объема кристалла размером (объемом) г в виде [c.116]

    Для кристаллов с чисто ковалентной связью понятие молекулы тоже может быть распространено на весь кристалл. Однако в [c.125]

    Система может быть гомогенной (однородной) или гетерогенной (неоднородной). Вводя понятия гомогенной или гетерогенной системы, сразу же сталкиваемся с понятием фазы. Иногда достаточно определить фазу как часть системы, которая отделена от других частей поверхностями раздела и механически отделима от них. Это определение фазы будет исчерпывающим, если она непрерывна. Если фаза прерывна, например совокупность кристаллов хлорида натрия или ртути, разлитой на поверхности, под фазой понимают совокупность телесных комплексов, обладающих одинаковым химическим составом и термодинамическими свойствами. [c.183]

    Общепризнанного определения понятия комплексное соединение нет. Это обусловлено разнообразием комплексных соединений и нх характерных свойств. В лабораторной практике химики чаще всего имеют дело с соединениями в твердом и растворенном состоянии. Для этих условий можно дать следующее определение комплексных соединений комплексными назьшаюжя соединения, в узлах кристаллов которых находятся комплексы, способные к самоспюятель- [c.94]

    Для сшитых ковалентными связями макромолекул полимеров понятие молекулярная масса вообще теряет смысл так, кусок пространственно-сшитого материала (например, эбонита, резины, кристалл алмаза) по сути - одна молекула. [c.15]

    Работы Брукса и Тейлора [15-16] о мезофазных превращениях при термолизе нефтепродуктов послужили очередным толчком для развития физических идей фазового перехода. Эти идеи в основном заключались в рассмотрении возникающих при термолизе структур, напоминающих по ряду свойств традиционные жидкие кристаллы. Акцент в исследованиях нефтепродуктов стал смещаться в сторону изучения их коллоидных свойств и процессов структурирования в жидкой фазе. Было введено понятие нефтяные дисперсные системы . [c.31]

    При рассмотрении X. с., основанном на квантовомех. расчетах волновых функций многоатомных молекул, нонов, кристаллов, понятие двухцентровой связи, используемое в классич. теории валентности, не получает прямого эквивалента вследствие делокализации электронных орбиталей по нескольким (нередко всем) атомным центрам. Переход к локализованным орбиталям часто сохраняет возможность анализировать X. с. в многоатомных молекулах в рамках традиционных представлений о связях, поделенных и неподеленных электронных парах. Типичные примеры соединений с локализованными двухцентровыми связями — насыщ. углеводороды (связи С—С, С—Ы). В том случае, когда процедура локализации пе позволяет однозначно выделить в молекуле локализованные двухцентровые орбитали, реализующиеся в ней X. с. относят к многоцентровым связям, характерным для ненасыщ. соединений с сопряженными связями (см. Сопряжение связей). Предельный [c.646]

    БЛОКИ МОЗАИКИ - участки монокристалла или зерна (субзерна) поликристалла, отличающиеся нена-рушеннот кристаллической решеткой и разориентированные (смещенные или повернутые) относительно друг друга на доли градуса. Характеризуют несовершенство кристаллической структуры, связанное с наличием дефектов в кристаллах. Совокупность Б. м. (рис.) образует мозаичную структуру кристалла, понятие о к-рой возникло в начале 20 в. при изучении отражения рентгеновских лучей кристаллами. Подобная структура образуется при криста.1лизации вещества из расплава, вследствие пластического деформирования материала, в результате. чартенситного превращения стали, при отпуске закаленных сплавов, распаде пересыщенных твердых растворов, облучении материала нейтронами и т. д. Эта структура влияет на протекание таких процессов, как диффузия, абсорбция, адсорбция и т. п. Границей между Б. м. служит система дислокаций, вдоль и вблизи к-рых кристаллическая решетка искривлена. Два блока, разделенные такой границей, разориентированы относительно друг друга на угол , связанный с расстоянием й между дислокациями и Блоки мозаики в кристалле. [c.146]

    В своей классической работе Маллинз и Секерка [211] ввели в теорию роста кристаллов понятие о количественной оценке устойчивости формы роста. До появления этой статьи считалось, что общий вид формы, сохраняющейся при росте, — это исследованный Хэмом [68, 69] эллипсоид, хотя устойчивость такого эллипсоида не была изучена. Необходимость исследования устойчивости вызвана тем, что кристаллы часто растут в виде дендритов. Дендриты, или древовидные кристаллы, состоящие из центрального ствола, первичных, вторичных и т. д. ветвей,— частое явление как в природе, так и в лабораторных исследованиях. Рост дендритов служит ярким примером неустойчивости эллипсоидальной и полиэдрической форм роста, проявляющейся при определенных условиях. [c.475]

    Помимо рассмотренной модели роста реального кристалла могут существовать и другие подходы, учитывающие реализующиеся на практике виды несовершенств поверхности растущего кристалла. Понятие структуры поверхности включает в себя ее микроскопическое строение (в атомном масштабе) и макроско- [c.135]

    Коссель ввел для объяснения роста кристаллов понятие" об атомномолекулярных свойствах поверхности образующейся твердой фазы. Он впервые показал, что если новая фаза кристаллическая, то она образована путем наслаивания на поверхность любой грани растущего кристалла плоских или двухмерных зародышей. Скорость наслаивания новых слоев на разные грани кристалла будет различной, а поэтому и форма кристаллов далекой от термодинамически равновесной. Растущий кристалл приобретает правильную форму на более поздних стадиях за счет перераспределения скорости роста граней путем таяния одних и ускоренного роста других граней. [c.40]

    Пространстиенная решётка кристалла. Понятие об элементарной ячейке [c.91]

    Таким образом, в обычных условиях ионные соединения представляют собой кристаллические вещества. Поэтому для ионных соединений понятие простых двух-ионных молекул типа Na l и s I теряет смысл, а весь кристалл можно рассматривать как гигантскую молекулу, состоящую из ог-рюмного числа ионов Na l,i и s l . [c.88]

    Электронные облака не имеют резко очерчеипых границ. Поэтому понятие о размере атома не является строгим. Ио если представить себе атомы в кристаллах простого вещества в виде соприкасающихся друг с друго.м шаров, то расстояние между центрами соседних шаров (т. е. между ядрами соседних атомо ) можно принять равным удвоенному радиусу атома. Так, наименьшее межъядерное расстояние в кристаллах мед разно 0,256 им это позволяет считать, что радиус атома меди равен половине этой величины, т. е, 0,128 нм. [c.99]

    В. И. Касаточкина, который рассматривает графитацию как гомогенный процесс. Положения о фазовых состояниях гомогенной системы были развиты В. А. Каргиным и Г. Л. Слонимским [96] по отношению к полимерам. Под фазой они понимают гомогенную систему, находящуюся в термодинамическом равновесии. Гомогенная система, в которой нет поверхностей раздела между ее частями, может быть химически неоднородной. Понятие фаза не отождествляется с понятием агрегатное состояние . Так, твердые стеклообразные тела термодинамически являются жидкими фазами к твердым фазам относятся только кристаллические тела. Гомогенность понимается без учета неоднородностей, обусловленных молекулярным строением тела, и аморфный полимер считается гомогенным телом, а микрокристаллический полимер, в котором имеются неупорядоченные области, — гетерогенным. При этом авторы утверждают, что внутренние напряжения в полимере отражаются на форме кристаллов и ограничивают их рост. Пластинчатые и игольчатые формы вызывают меньше напряжений и потому быстрее растут. Развивающаяся кристаллизация приводит к минимуму внутренних напряжений и к наилучшим условиям для их релаксации, т. е. к уменьшению внутренней энергии. [c.203]

    Как уже было сказано, понятие об ионных радиусах во многих случаях условно постоянство радиуса одного и того же иона в различных соединениях соблюдается лишь приближенно. Обычно указываемый заряд -иона следует понимать буквально только для одно- и двухзарядных ионов в некоторых соединениях, где велика доля ионной связи. Ионы с большим зарядом практически не встречаются в кристаллах (гидратированные одцоатомные ионы с зарядами 22— и 3иногда и 4 + существуют в водных растворах). В соединениях, содержащих элементы в стеиени окисления выше +2, связь, как правило, не бывает ионной н поэтому понятие-о радиусе иона в этих случаях является таким же-формальным, как понятие о степени окисления. Однако изменение радиусов ионов характеризует изменение межатомных расстояний, [c.50]

    Понятие о координационном чнсле применяют не только ири рассмотрении окружения атомов в кристаллах, но и в свободных молекулах (в газах) и в многоатомных ионах, существующих в растворах. Для большинства металлов в кристаллах к. ч. равно 12, что соответствует наиболее плотной упаковке. Радиусы атомов и ионов зависят от к. ч. Значение радиуса Га или ri при другом к.ч. можно найти умножением г при данном к.ч. на определенный коэффициент. Так, при уменьшении к.ч. от 12 до 8,6 и 4 Га, отвечающий к.ч. = 12, нужно умножить соответственно на 0,97 0,96 и [c.51]

    Согласно представленному циклу процесс образования кристалли ческого хлорида натрия из твердого металлического натрия и ГН зообразного хлора возможен по двум путям. Первый путь состоит в превращении натрия и хлора в состояние ионов Na+ и С1 и образовании из них твердого хлорида натрия. В соответствии с определением понятия энергия кристаллической рещетки при образовании Na l из газообразных ионов выделяется энергия, равная по абсолютной величине Uo. Для получения ионов натрия требуется перевести металлический натрий в газообразное состояние. На это затрачивается теплота возгонки ДЯвозг. Затем нужно подвергнуть атомы ионизации, что требует энергии ионизации/ма. Для получения ионов хлора необходимо сначала разорвать связь в молекуле СЬ (на получение 1 моль С1 потребуется /г св), затем к атому хлора нужно присоединить электрон, оторванный от атома натрия при этом выделяется энергия сродства к электрону E u Все указанные здесь величины мo yт быть измерены. [c.153]

    В кристаллохимии широко используется понятие координационного числа. Этим термином называется число атомов, непосредственно взаимодействующих с данным атомом. Можно показать, что координационное число в общем тем больше, чем меньше различие в размерах ионов (пли атомов). При одинаковых размерах ионов координационное число может достигать 12, как это имеет место у металлов, кристаллизующихся в плотнейших кубической или гексагональной решетках. Из структур, встречающихся у соединений типа АВ, наиболее плотной укладке. отвечает объемно-центрированная кубическая, решетка s l со свойственным ей координационным числом 8, далее следует простая кубическая решетка Na l с координационным числом 6 и еще дальше структуры сфалерита (и вюрцита) с координационным числом 4. Кристаллы соединений двух- и трехвалентных элементов, не рассматривавшиеся нами, имеют иногда решетку графита, у которой координационное число равно 3. [c.130]

    Проверка уравнения (38.42) была проведена примерно на 30 веществах (двухатомные и простые многоатомные молекулы). В большинстве случаев оказалось, что уравнение (38.41) выполняется в пределах точности эксперимента. Однако для разных веществ экспериментально установлено отклонение от уравнения (38.41). Таким образом, формулировка Планка теплового закона Нернста не выполняется как точное утверждение. Речь идет об отклонениях в основном замороженных молекулярных кристаллов, которые были упомянуты в пункте а. в связи с предположением 1. Фактически при формулировке (38.41) предположение 1 вообще не учитывается. Поэтому предложено два способа для превращения (38.41) в точный закон. Первый состоит в том, что для рассматриваемого вещества дополнительно требуют внутреннее равновесие при Т- 0, в то время как во втором способе в правой части уравнения (38.41) нуль заменяется на положительную конечную величину Я 1п W. Против первой формулировки свидетельствует то, что понятие внутреннего равновесия имеет смысл только по отношению к определяемым процессам . При второй формулировке из сравнения калориметрической и спектроскопической энтропии известно, что либо W=, либо по порядку величины W=2. Это сравнение выполнимо только для относительно малого числа веществ. В других случаях приходится ограничиваться только предположениями. Практически всегда исходят из уравнения (38.41) и учитывают, что нормальная энтропия, рассчитанная таким образом, имеет неточность порядка Я 1п 2. Этот способ тем более обоснован, так как неточность, обусловленная экстраполяцией при Г->0(разд. а., предположение 3), того жепорядка. Для большинства применений величина этого порядка не играет [c.196]


Смотреть страницы где упоминается термин Кристаллиты, понятие: [c.168]    [c.162]    [c.137]    [c.283]    [c.132]   
Химия высокомолекулярных соединений (1950) -- [ c.39 ]




ПОИСК





Смотрите так же термины и статьи:

Дифракция рентгеновских лучей при прохождении через кристалл Понятие об интерференции

Законы геометрической кристаллографии Понятие о кристалле, кристаллическом веществе и кристаллографии

Ионные кристаллы определение понятия

Облик кристалла, понятие

Основные понятия кристаллохимии Результаты первых рентгеноструктурных исследований кристаллов

Основные понятия. Равновесие фаз и растворимость. Образование кристаллов Методы кристаллизации и аппаратура

Понятие о зонной теории кристаллов

Понятие о симметрии 19 2. Кристаллический многогранник Элементы симметрии 19 и решетка кристалла

Рост кристаллов и понятие о дефектах кристаллических решеток Классификация дефектов кристаллического строения. Точечные и протяженные дефекты. Выявление дислокаций металлографическим методом. Формы ямок травления на разных гранях кристаллов

ЭЛЕМЕНТЫ ТЕОРИИ СИММЕТРИИ ДИСКОНТИНУУМА Пространственная решётка кристалла. Понятие об элементарной ячейке yl Трансляция

Энергия решетки, определение понятия также Цикл Борна-Габера Ионные кристаллы



© 2024 chem21.info Реклама на сайте