Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие дальнее в циклогексанах

    В дальнейшем мы рассмотрим газофазное хлорирование, а сейчас возвратимся к в такой же степени интересным реакциям в жидкой фазе. Взаимодействие хлора с некоторыми олефиновыми растворителями приводит к молекулярно-индуцированному гомолизу связи С1—С1 (см. обсуждение на стр. 115, 116 и 119). Например, в темноте и при отсутствии кислорода в циклогексане при 25° С хлор быстро реагирует с образованием продуктов  [c.176]


    В качестве дальнейшего шага по применению модельного подхода к системам с универсальными взаимодействиями нами были выполнены расчеты значений 0 для систем бензол— гексан и бензол—циклогексан. [c.100]

    Реакция нитрозирования проводится в кипящем циклогексане при атмосферном давлении. В результате взаимодействия циклогексанкарбоновой кислоты с нитрозилсерной кислотой происходит декарбоксилирование и при дальнейших обработках реакционной массы образуется капролактам по следующей схеме  [c.310]

    Радикал С2Н3 распадается в дальнейшем на ацетилен и Н или, взаимодействуя с молекулой углеводорода, образует этилен. В отличие от циклопентана циклогексан не дает при разложении заметных количеств циклогексадиена реакция дегидрирования его с образованием бензола также практически не идет, но наряду с этиленом образуется бутадиен-1,3. [c.21]

    Для ряда моиозамещениых бензолов, адсорбированных на кремневой кислоте из раствора в циклогексане, полосы поглощения были расширены и несколько смещены в коротковолновую область (пшсохромный сдвиг) [13]. Эти сдвиги соответствовали приблизительно 1% от полной энергии перехода и аналогичны сдвигу, наблюдаемому для спектра бензола, адсорбированного из газовой фазы на прозрачном силикагеле [44]. Уширение спектральных полос при адсорбции можно интерпретировать как результат статистического распределения энергетических состояний молекулы в поле полярно" адсорбента. Спектральные сдвиги могут быть следствием образования водородной связи или изменения полярности среды. Так, например, электронный спектр анилина в воде но сравнению со спектром в циклогексане обнаруживает сдвиг в коротковолновую область примерно на 1000 м- [45]. Это можно объяснить образованием водородной связи между водой, действующей как донор протонов, и неподеленными электронами МНг-группы. Образование водородной связи уменьшает взаимодействие между этими двумя /7г-электронами и кольцом и поэтому сдвигает полосу поглощения в коротковолновую область. Повышение кислотности среды при адсорбции анилина на кремневой кислоте приводит к дальнейшему сдвигу в коротковолновую область, обусловленному увеличением протонодонорной способности кремневой кислоты по отношению к протонодонорной способности воды. Предельным случаем для анилина было бы растворение его в кислоте, при котором основной формой, поглощающей свет, является ион анилина, а не молекула анилина. Первоначально неподеленные электроны прочно локализованы в связи N—Н и, следовательно, неспособны к взаи модействию с кольцом. В этом случае спектр возвращается К спек тру бензола. [c.27]


    В ряду циклопарафинов группы циклопропана и циклобутана являются гораздо более реакционноспособными соединениями, чем труппы циклопентанов и циклогексанов при действии химических реагентов здесь чап1е всего происходит разрыв кольцевых систе.м из 3—4 углеродных атомов. При этом обычно получаются соединения с прямыми цепямм . Так как в низкокипящих фракциях нефти были найдены в ощутимых количествах лишь циклические соединения с 5 и 6 углеродными атомами, то в дальнейшем в качестве представителей циклопарафиноЕ мы будем рассматривать лишь эти два ряда соединений. При этом следует отметить, что, хотя реакционная способность циклопентанов и циклогексанов в основных чертах очень похожа на реакционную способность парафинов, некоторые из их гомологов все же довольно. легко вступают во взаимодействие с различными реагентами. [c.1120]

    Найденные выше значения теплот образования и энергий диссоциации связей позволяют получить ряд ценных сведений о свободном радикале СбНцО .При взаимодействии этого радикала с молекулой циклогексана происходит образование циклогексанола и циклогексильного радикала. При этом рвется связь СН в циклогексане и образуется ОН-связь в спирте. Тепловой эффект этой реакции положителен и равен разности энергий диссоциации этих связей <7=12 ккал/моль (здесь и в дальнейшем будем считать, что энергия диссоциации ОН-связи в спиртах равна в среднем 102 ккал/моль). Используя соотношение Поляни—Семенова, находим, что энергия активации этого процесса приблизительно составляет 8,5 ккал/моль, т. е. относительно невелика. Это говорит о довольно высокой реакционной способности радикала СеНцО . [c.230]

    Циклогексан по сравнению с другими моноциклическими углеводородными соединениями имеет две важные для конформационного анализа особенности. Во-нервых, в циклогексановом кольце все торсионные углы одинаковы . В результате эквивалентности торсионных углов в циклогексане возможны только два расположения заместителя относительно кольца аксиальное или экваториальное. Вторая, не менее важная особенность цикло-гексанового кольца заключается в том, что обе ориентации заместителя соответствуют минимумам конформационной энергии соединения. Эти свойства существенно упрощают конформационный анализ соединений циклогексанового ряда. В нешестичленных циклических системах атомы кольца в общем случае не эквивалентны, и вместо двух положений, которые могут занимать заместители, имеется набор возможных ориентаций. Дальнейшее усложнение вносится тем обстоятельством, что для конформаций кольца, отвечающих минимуму энергии, заместитель, как правило, не будет иметь наиболее выгодную, свободную от взаимодействий закрепленную ориентацию. Стремление системы уменьшить эти взаимодействия при одновременном сохранении наиболее выгодной конформации циклического остова может привести к разнообразным искажениям. [c.235]

    При использовании очень высоких концентраций акцепторов может наблюдаться выход электронов, которые должны были бы испытывать быструю рекомбинацию с ионами в шпорах [211]. Сато и др. [195] предположили, что сольватированные электроны по крайней мере частично ответственны за разложение закиси азота в бензоле, происходящее с С 1 при концентрации закиси азота 0,1 моль и возрастающее в дальнейшем при повышенных концентрациях. Это отвечает примерно половине величины, найденной для соответствующего раствора в циклогексане. Для объяснения этого различия авторы предположили, что закись азота и бензол конкурируют за электроны. Отношение скоростей конкурирующих реакций, оцененное из экспериментов, составляет 20 1 [195] в бензоле и 100 1 [200] и 300 1 [210] в циклогексане. Однако, поскольку происходят также вторичные реакции (гл. 5, разд. 5.3.2.1), образование N2 не является абсолютной мерой производимых электронов. Было исследовано [222] взаимодействие других молекул-детекторов, реакционноспособных по отношению к электронам, например алкилиодидов, ал-килбромидов, четыреххлористого углерода и бензилацетата. Несмотря на заметное начальное увеличение выхода продукта из этих молекул-детекторов при возрастании их концентраций, предельная величина О достигается при довольно высокой концентрации (обычно 10%). Даже если эти результаты и свидетельствуют о важности ионных процессов в радиационной химии, трудно получить прямые выводы относительно поведения чистых ароматических углеводородов. Некоторые из этих процессов могут быть также вызваны переносом энергии от высоколежащих синглетных состояний [разд. 3.3.6.1(2)]. [c.128]

    Дальнее взаимодействие значительной величины через 4 (а иногда и более) а-связи было замечено в системах, не обладающих непасы-щенностью. Для таких систем характерна неносредственная зависимость констант спин-сниновой связи от конфигурации молекулы и взаимного расположения протонов. Так, например, в 2,2,1-би-циклогексанах XIII сильная связь (/ = 7—8 гц) наблюдается между а и а протона ш, в то время как не было замечено взаимодействия между протонами а — Р или р — Р.  [c.120]

    Еще в 90-х годах XIX в. Заксе рассматривал возможность существования циклогексана в формах ванна и кресло и допускал существование двух динамических изомеров монозамещенных циклогексанов в форме кресла. Некоторые авторы полагают возможным поэтому считать Заксе основателем конформационного анализа. Дальнейшее развитие эти представления получили уже на основе идей химической физики о природе межмолекулярного взаимодействия атомов, изучение которого предшествовало исследованию внутримолекулярного их взаимодействия, ответственного за существование различных конформаций. [c.224]



Смотреть страницы где упоминается термин Взаимодействие дальнее в циклогексанах: [c.288]    [c.33]    [c.181]    [c.33]    [c.181]    [c.68]    [c.61]    [c.61]   
Применение ямр в органической химии (1966) -- [ c.151 ]




ПОИСК





Смотрите так же термины и статьи:

Дальнее взаимодействие

Циклогексан



© 2025 chem21.info Реклама на сайте