Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экспериментальное определение чисел сольватации

    Однако данные по рефракции и распределению дейтерия между водородсодержащими ионами и водой подтверждают существование ионов Н3О+ в воде. В полярных растворителях происходит сольватация его. Определение числа гидратации различными экспериментальными методами дает значение от 2-х до 5-ти. Заслуживает внимания представление о том, что протон преимущественно находится в форме тетрагидрата, который можно рассматривать как гидрат иона оксония Нз0(Н20) , образующийся посредством водородных связей с тремя молекулами воды  [c.592]


    Как правило, числа сольватации, полученные различными методами, плохо согласуются. Плохая согласованность, не говоря уже об экспериментальных трудностях, отражает различия в моделях, используемых для определения чисел сольватации, а также в основных допущениях, принятых в этих моделях. К сожалению, модели с двумя состояниями растворителя являются очень грубыми приближениями. Даже для сильно гидратированных ионов с относительно несжимаемой первой гидратной оболочкой воздействие на более удаленные молекулы воды не сводится только к одной электрострикции. Сильно гидратированный ион, такой, как влияет на достаточно удаленные молекулы воды и вызывает некоторое возмущение внешней гидратной оболочки, возможно даже усиливает сжимаемость этой части растворителя. На современном этапе исследования структуры растворов ценность дальнейшего изучения чисел гидратации находится под большим вопросом, поскольку они сложным образом зависят от различных взаимодействий типа ион - растворитель, для которых пока не имеется достаточно адекватной модели. [c.444]

    Робинсон и Стокс [56] рассчитали числа сольватации электролитов, исходя из различий между экспериментально определенными коэффи-циентами активности и вычисленными согласно уравнению Дебая— Хюккеля. Их метод был затем модифицирован Глюкауфом [25]. Следует заметить, что обе схемы имеют тот недостаток, что число сольватации рассматривается как независимое от концентрации раствора, а это находится в противоречии с экспериментальными фактами. [c.30]

    Седиментационное равновесие в отличие от скорости седиментации и диффузии не зависит от формы молекулы, и на получаемые результаты мало влияет сольватация. Для экспериментального определения молекулярного веса этим методом измеряют концентрации 1 и Сг на расстояниях Х1 и Хд от оси вращения ротора после установления равновесия. Для достижения равновесия требуется до нескольких суток, в течение которых температура и число оборотов ротора обязательно должно быть постоянными, что является существенным недостатком метода . Кроме того, в процессе самого опыта нестойкие в растворенном состоянии полимеры (например, белки) могут претерпевать некоторые изменения. [c.413]

    Число первичной сольватации является величиной, содержащей меньше неопределенности по сравнению с числом полной сольватации. Оно ограничено числом ближайших к иону молекул растворителя. Существующие экспериментальные методы определения чисел первичной сольватации для данного иона дают достаточно согласующиеся между собой величины. Однако из-за трудностей опыта, избирательности или малой точности методов сведения о первичных числах сольватации ионов весьма ограниченны. Особенно это относится к ионам типа инертного газа. [c.43]


    Согласно формуле (22), величина Нт является линейной функцией числа одинаковых групп при постоянном числе остальных групп. Вклад определенной группы в величину Нт данного соединения должен быть поэтому независимым от молекулярного остатка и от положения этой группы в молекуле. Это, конечно, справедливо только приближенно. Поскольку отдельные группы влияют друг на друга, имеют место отклонения от этого. Хорошего согласия с формулой (22) можно ожидать, собственно говоря, только в гомологических рядах и только в той мере, в какой пространственное расположение гомологических структурных элементов обеспечивает одинаковую возможность сольватации, причем одновременно остаток молекулы в каждом члене ряда остается одинаковым. Таким образом, под гомологическим рядом в узком смысле слова подразумевается ряд нормальных карбоновых кислот, спиртов, сложных эфиров, аминов, аминокислот и т. д. точно так же образуют гомологический ряд бензол, толуол, этилбензол, но не бензол, толуол и ксилол [56]. Щавелевая, малоновая, янтарная кислоты и т. д., согласно упомянутому критерию, также не образуют гомологического ряда, поскольку изменяется не только длина цепи, но и взаимодействие карбоксильных групп. В Пределах подобных ограничений, как указывалось выше , требуемая, согласно (22), аддитивность часто подтверждалась экспериментально. При систематической обработке по формуле (22) можно [c.105]

    Сравнивая рис. 1, 2 можно отметить важное обстоятельство - с увеличением размера катиона согласие расчетных и экспериментальных данных, особенно в области максимума на зависимости энтальпий переноса, ухудшается, причем во всех случаях (IX) несколько переоценивает величины экстремумов. По-видимому, в этом есть определенная систематичность, хотя отсутствие необходимых экспериментальных данных в других системах не позволяет сделать более конкретные выводы. Одно из возможных объяснений может состоять в принятых при выводе расчетных уравнений допущениях, в том числе в игнорировании эффекта предпочтительной сольватации растворенного вещества. [c.109]

    Различные методы определения чисел сольватации часто дают несовпадающие результаты, причем величины л во многих случаях оказываются меньше координационного числа п, т. е. того числа молекул растворителя, которые составляют ближайшее окружение иона. Для объяснения этих результатов можно воспользоваться предложенной О. Я. Самойловым следующей динамической картиной явлений сольватации. Все частицы раствора — ноны и молекулы растворителя — находятся в непрерывном хаотическом движении, которое осуществляется за счет периодических перескоков этих частиц на расстояния порядка размеров молекул. Пусть Т1 — среднее время, в течение которого ион находится в неподвижном состоянии, а тг — время, необходимое, чтобы диполь растворителя, находящийся вблизи иона, порвал связь с другими диполями, изменил свою ориентацию и вошел в состав сольватной оболочки иона. Если Т1 Т2, то молекулы растворителя успевают порвать водородную или диполь-ди-польную связь с другими молекулами растворителя и войти в сольватную оболочку иона. В этих условиях ион окрулоет прочная сольватная оболочка и пн = пь. Поскольку согласно уравнению (II.9) электрическое поле иона тем сильнее, чем меньше его радиус, то это характерно для небольших ионов. Так, например, результаты по сжимаемости водных растворов солей лития, по энтропии гидратации и по подвижности иона дают среднее значение лл=б, соответствующее координационному числу иона лития. При условии Х1<Ст2 диполи растворителя в сольватной оболочке очень быстро меняются, а экспериментальное значение пл==0. Такой результат получается для ионов большого радиуса и малого заряда, например для ионов 1 и Сз+. При сравнимых Т1 и Т2 числа сольватации принимают значения от О до Пк, причем различные методы в неодинаковой степени отражают процесс замены диполей в сольватной оболочке иона, и это приводит к значительному расхождению результатов для Пн. [c.32]

    До недавнего времени считалось, что прямое определение термодинамических характеристик сольватации индивидуальных ионов невозможно. Однако бурное развитие экспериментальной техники, создание новых и совершенствование старых методов эксперимента открывает большие перспективы в этом направлении. Так, большой интерес представляет масс-спектрометрические исследования Ке-барле с сотрудниками [258—261]. Они получили масс-спектры ионов в парах аммиака и воды с добавками благородного газа при давлениях, близких к атмосферному, и определили на их основе константы равновесия для нескольких процессов последовательного присоединения указанных молекул к ионам. Это позволило рассчитать изменения энтальпии, энтропии и изобарно-изотермического потенциала, связанные с увеличением числа сольватирующихся молекул растворителя на отдельных ступенях указанного процесса. Хотя полученные данные относятся к газовой фазе и являются пока приблизительными оценками, в будущем они открывают одну из возможностей экспериментального определения термодинамических характеристик сольватации индивидуальных ионов. [c.119]


    Вторая из причин заключается в том, что различные экспериментальные методы определения чисел сольватащш чувствительны к различным вкладам от ближней и дальней сольватации и поэтому приводят к различным числам сольватации. [c.97]

    Оценка имеющегося экспериментального материала показывает, что координационные свойства растворителя можно количественно описать и предсказать с определенной степенью точности на основе донорных и акцепторных чисел. Это касается прежде всего ряда свойств, связанных с сольватацией растворенных частиц. Если доминируют нуклеофильные свойства растворителя (большое )лг, малое Лдг), то достаточно учитывать донорные числа. Так, при полярографическом осаждении катионов из таких растворителей установлена связь между потенциалом полуволны окислительно-восстановительной системы, например Ма++е Ка, и донорным числом ДПЭ-растворителя, что позволяет заранее оценить неизвестное значение потенциала полуволны при заданном донорнрм числе. Потенциал полуволны оказывается тем более отрицательным, чем прочнее сольватная оболочка, т. е. чем больше донорное число Оц. В то же время в случае преобладания электрофильных свойств. растворителя можно ограничиться рассмотрением акцепторных чисел. Они особенно удобны для выявления различий сольвати-рующей способности растворителей при взаимодействии с анионами. Если же одновременно проявляются ДПЭ- и АПЭ-свой- ства растворителя, то необходимо привлекать оба числа — дозорное и акцепторное, так как наиболее полная характеристика координационной способности растворителя становится возможной лишь в рамках модели двух параметров. [c.448]

    Из числа экспериментальных методов особенно эффективным для определения долей переноса тока в концентрированных растворах является радиометрический вариант метода Гитторфа, при котором электролиз ведется в трехъячеечном электролизере, и изучается направление и степень электромиграции радиоизотопа, вводимого в среднее отделение. К достоинствам этого варианта метода Гитторфа в отличие от обычного химико-аналитического относится возможность исследования переноса в тех многочисленных случаях, когда вследствие процессов комплексообразования или сольватации определяемый элемент входит в состав как катиона, так и аниона. [c.404]

    В пользу такой интерпретации имеются экспериментальные доказательства. На рис. 7-8 показано соотношение между зависимой от растворителя скоростью сольволиза л-метоксинеофилтозилата, который был использован для определения индексов IgA j [134], и химическим сдвигом сигналов в ЯМР-спектре л-нитрозофторбензола [147] в тех же растворителях. Судя по акцепторным числам, на оба процесса преимущественное влияние оказывает акцепторная способность растворителя. Графическая зависимость %к от A4 показана позже на рис. 7-11. Найдено, что скорость сольволиза тозилата контролируется сольватацией образующегося тозилат-аниона. Обращает на себя внимание разница между графиками на рис. 7-8 и 7-11, состоящая в том, что отклонения от линейной зависимости для структурированных растворителей находятся по разные стороны от прямой. Можно с уверенностью предположить, что по относительной силе доноры располагаются в ряду [c.172]

    Когда будет накоплено достаточное число надежных данных прямых экспериментов подобного рода, будет положен конец спорам о преимущественной сольватации катиона перед анионом (или наоборот), возникшим в последние годы в связи с некоторыми данными по влиянию сольватации на кинетику химических реакций. Получило даже распространение утверждение, что анион несольватиро-ван , и термин несольватированный анион . Независимо от вкладываемого смысла эти термины неудачны с точки зрения строгих определений процесса (см. раздел IV. 1). Что касается термодинамического смысла подобных утверждений, то они предполагают относительно малый вклад аниона в энергетику взаимодействия электролита с растворителем, что не исключено в некоторых неводных растворах, хотя и требует прямого экспериментального подтверждения. У воды нет оснований для предпочтения аниона перед катионом. Наоборот, это противоречит выводам Фаянса, который еще в 1921 г. заметил явление постоянства разностей теплот гидратации анионов и закономерность их изменений для разных пар анионов (см. стр. 64). [c.69]

    Принимается, что энергия промежуточного комплекса равна нулю, а относительная энергия начального и конечного состояний рассчитывается на основе изменения энергии, сопровождающего разрыв и образование связей, перенос электрона, сольватацию и десольватацию, и изменения в делокализации. В расчете применяются некоторые эмпирические поправки, с помощью которых достигается внутренняя согласованность. Особое значение для хорошего соответствия с экспериментальными данными имеет эффект, который относится к электроотрицательным заместителям, связанным с реакционным центром. Такой а-замести-тель вызывает, по-видимому, понижение энергии переходного состояния при нуклеофильной атаке. Энергетические уровни активированного комплекса вычисляют на основе соотношения между экзо- и эндотермичностью реакции и процентом энергии диссоциации связи, необходимой для переходного состояния с учетом влияния а-заместителя. Это применение постулата Хэммонда [204] предусматривает построение эмпирического графика зависимости экзо- и эндотермнчностн от процента энергии диссоциации связи. Хорошее соответствие с определенной экспериментально энергией активации является достаточным обоснованием такого метода. Результаты относятся к реакциям, протекающим в метаноле. На рис. 13 изображены координаты реакций для некоторых систем, имеющих отношение к данному обзору [16, 200]. В качестве примеров приведены реакции 2,4,6-тринитро-, 2,4-динитро- и 4-нитроанизола. Как и ожидалось, устойчивость различных комплексов по сравнению с исходными ароматическими соединениями возрастает с увеличением числа нитрогрупп. Это находит свое отражение в уменьшении энергии активации образования и возрастании [c.501]

    Закономерность, описываемая уравнением (2.15) или (2.16), наблюдается при использовании растворителей, принадлежащих к разным гомологическим рядам, например, высших спиртов, эфиров уксусной кислоты, ароматических углеводородов. Единственное исключение составляют алифатические углеводороды—константы распределения вещества между нормальными алифатическими углеводородами и водой практически одинаковы. Число атомов углерода в молекулах этих растворителей не влияет на константы распределения (хотя с увеличением числа атомов С число молей углеводорода в 1 л его уменьшается) небольшие колебания вызываются экспериментальными ошибками (табл. 2.32.). График зависимости 1дРо от 1 1 0 при данных экстрагентах представляет собой прямую, параллельную оси абсцисс. Следовательно, а = т ж 0. В алифатических углеводородах органические вещества растворяются без образования сольватов определенного состава (неспецифическая сольватация). [c.102]

    В теории Бренстеда принимается, что результатом протолитического процесса является образование в водных растворах и в воде иона оксония НзО" . Это важное полонгепие протолитической теории нашло экспериментальное подтверждение. Существование оксония доказано различными методами (кислотный катализ, рентгеноструктурное исследование моногидратов сильных кислот, ЯМР, масс-спектрометрия, рефрактометрия) [20]. Свободные протоны в растворе практически отсутствуют [64, 65]. В полярных растворителях происходит сольватация оксония. Определение его числа гидратации различными экспериментальными методами дает значения от 2 до 5 [20]. Заслуживает внимания представление Викке, Эйгена и Аккермана [66], что протон преимущественно находится в форме тетрагидрата, который можно рассматривать как гидрат оксония Нз0(Н20)з . [c.31]

    Отметим, что для водных и спиртовых растворов координация катионов и анионов в области ближней (в случае многоатомных спиртов с учетом полидентантности их молекул) и дальней сольватации одинакова. Подтверждением этого вывода являются также данные работ [88, 275, 469, 473]. Найденные числа молекул растворителя в различных областях сольватации близки к литературным [275, 471]. Они хорошо согласуются с числами молекул растворителя, полученными Загорцом с сотрудниками, и укладываются в рамки их представлений [275, 470]. Координационные числа в области ближней сольватации определяются химическим взаимодействием ионов с молекулами растворителя. Числа молекул растворителя в первой области дальней сольватации определяются в основном зарядами катионов. С увеличением их эти числа увеличиваются. Для одно-, двух- и трехзарядных катионов они равны 30, 60, 90. Анализ дериватограмм растворов солей в смешанных водноспиртовых растворителях [474] приводит к выводу, что при высоких концентрациях воды и спиртов в области ближней сольватации (гидратации) находятся только преобладающие в растворе молекулы растворителя. Смешанные сольваты образуются в области средних концентраций спиртов. Соотношение между молекулами воды и спиртов в них зависит от состава растворителя. Вместе с тем дать определенные выводы о концентрационных границах существования смешанных сольватов и их составе преждевременно из-за отсутствия достаточного количества экспериментальных данных и трудностей их определенной интерпретации. [c.181]


Смотреть страницы где упоминается термин Экспериментальное определение чисел сольватации: [c.61]    [c.68]    [c.225]    [c.213]    [c.82]    [c.203]   
Смотреть главы в:

Электрохимия растворов -> Экспериментальное определение чисел сольватации

Электрохимия растворов издание второе -> Экспериментальное определение чисел сольватации




ПОИСК





Смотрите так же термины и статьи:

Сольватация

Сольватация, числа

Сольватация, число сольватации



© 2025 chem21.info Реклама на сайте