Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород из двуокиси марганца

    С кислородом марганец образует несколько окислов МпО — закись марганца, МпгОз — окись марганца, МпОг — двуокись марганца, МпОз — марганцовистый ангидрид, МпгО — марганцовый ангидрид. Два низших окисла — МпО и МпгОз обладают [c.254]

    По Бертрану, оксидазы представляли собой белковые соединения марганца, в которых марганец связан с белковым носителем солеобразно. Б водных растворах такой комплекс должен был распадаться на "белковую кислоту и закись марганца. Этот распад, как полагал Бертран, был непосредственно связан с каталитическим актом окисления. При э1-ом роль катализатора играла не белковая часть фермента, а закись марганца, активирующая молекулу кислорода.. В процессе биокаталитического акта закись марганца превращается в двуокись, а затем регенерируется в белково-марганцевый комплекс и становится снова готовой к осуществлению следующего каталитического акта. [c.142]


    В почве марганец находится в разнообразных соединениях, что определяется в первую очередь его химическими свойствами. Динамика различных форм марганца в почве зависит от происходящих в ней окислительно-восстановительных процессов. Растениям доступны лишь соли 2-валентного марганца. Окисляясь до 4-валентных форм, марганец становится недоступным растениям. Однако 4-валентный марганец в результате восстановления может вновь переходить в соединения 2-валентного. В анаэробных условиях и при кислой реакции среды растворимость почвенного марганца резко возрастает. Некоторые почвенные микроорганизмы при слабокислой и нейтральной реакции среды окисляют марганец. В анаэробных условиях бактерии используют двуокись марганца как источник кислорода. [c.51]

    Извлечение урана из большинства руд при кислотном выщелачивании происходит более полно. Несмотря на то, что для этой цели могут с успехом использоваться как азотная, так и соляная кислоты, чаще всего применяют серную кислоту, вследствие ее доступности и по соображениям экономического характера. В серной кислоте легко растворяются только соединения урана (VI). Чтобы быть уверенным в полноте извлечения урана, для урановых минералов, содержащих большие количества урана в низших валентных состояниях, при выщелачивании должны быть обеспечены условия окисления. Так как UOg практически не растворим в разбавленной серной кислоте, то уранинит, урановая смоляная руда и руды с большим содержанием урана (IV) должны обрабатываться окислителями, например двуокисью марганца, трехвалентным железом, хлором, хлоратами или молекулярным кислородом. Двуокись марганца в количестве 2—3 кг на тонну руды одинаково пригодна для всех руд, кроме очень огнеупорных. Если марганец дорог, он может быть выделен на последуюпщх стадиях в виде гидроокиси марганца (II) и окислен воздухом при температуре 800° С до двуокиси. Эффективным окислителем является также трехвалептный ион железа кроме того, он иногда присутствует в природном материале пе менее эффективен ион ванади-ла VO  [c.127]

    Кислотно-осноБные свойства. С кислородо,м марганец образует следующие окислы МпО—закись или окись марганца (П),. VlnjO,—окись марганца (П1), МпО.,—двуокись марганца (IV), Mn.jOy—марганцевый ангидрид. Низший окисел МпО—белого цвета. Он обладает основными свойствами и легко растворяет- [c.353]

    Если продукты окисления сложных сплавов состоят из простых оксидов этих металлов, то по данным об их устойчивости можно сделать предварительное заключение о возможности пайки сплавов в восстановительной среде. Так, например, сплавы, на поверхности которых образуются оксиды M.gO, Т102, а-АЬОз, не могут быть запаяны в водородной среде. Сплавы, на поверхности которых образуются оксиды, содержащие СГ2О3, или оксиды на их основе (Сг, Ре)20з, требуют применения очень сухих восстановительных сред. Так, никелевый сплав Нимоник-80, содержащий 20 % Сг, 2,7 % Т1 и 1,8 % А1, не удается запаять медью при температуре 1180 °С даже в водороде с точкой росы —75 °С. Эти выводы подтверждаются практикой. Так, например, коррозионно-стойкую сталь 12Х8Н9Т, при окислении которой образуется смесь оксидов (Сг, Ре)20з и Ре0(СгРе)20з, паяют в среде водорода или диссоциированного аммиака только в случае, если из газа удалены следы кислорода, двуокись углерода и точка росы восстановительной среды не выше —60 °С. При температуре ниже 1200 °С оксиды, образующиеся на стали, содержащей хром, марганец и кремний в сумме более 2 %, не восстанавливаются в неосушенном водороде. Стали, содержащие 2 % титана и более, также не поддаются пайке в этой среде. [c.187]


    Оксиды, гидроксиды и их производные. Марганец образует с кислородом соединения одноокись МпО, полутораокись МпаОз, двуокись МпОг, трехокись МпОз (не выделен в свободном состоянии) и полусемиокись МпаО , причем наиболее устойчивыми являются JHn02, МпаОз, МП3О4, встречающиеся в природе. [c.118]

    Окисление -аскорбиновой кислоты помимо меди катализируют ионы магния [40], серебра. Следует отметить, что кальций, марганец, железо, никель и кобальт почти не обладают каталитическими свойствами в реакциях окисления аскорбиновой кислоты кислородом воздуха [26], а в безводном спиртовом растворе или других певодных растворах йод и другие галогены не реагируют с -аскорбиновой кислотой. Влияние pH на кинетику окисления -аскорбиновой кислоты подвергалось подробному исследованию [41 ]. В отсутствие катализаторов окисление кислородом воздуха не идет и растворы -аскорбиновой кислоты обладают стойкостью к умеренному нагреванию. Двуокись углерода и сернистый ангидрид предохраняют -аскорбиновую кислоту от окисления они применяются для ее стабилизации. [c.23]

    В каталитических реакциях ядами являются вещества, которые мешают действию катализатора, ослабляя или полностью уничтожая его активность. Яды проявляют свое действие в малых количествах и при очень низких концентрациях в отношении отравляемого катализатора. Отравляющее действие наиболее характерно для гетерогенных систем. Яды бывают твердые, жидкие и газообразные. Среди твердых каталитических ядсв находятся свинец, медь, марганец, цианиды, арсенаты и некоторые неомыляемые вещества. Ртуть, вода, этиловый и амиловый спирты принадлежат к жидким ядам, а окись угле-рода, двуокись углерода, сероводород, сера, хлор, кислород и водяной пар действуют как газообразные яды. Эти вещества были подразделены соответственно их действию на 1) сильные яды 2) умеренно действую1цие яды и 3) слабые яды [41, 52]. [c.382]

    Фтористый перманганил МпОзР получен из перманганата калия и фторсульфоновой кислоты смесь исходных реагентов, охлажденную твердой углекислотой, оставляют медленно нагреваться до комнатной температуры, затем перегоняют в вакууме н дистиллят конденсируют в углекислотной бане. Он образует темно-зеленые кристаллы (плавящиеся при —38 С в темно-зеленую жидкость), мгновенно гидролизуется водой, а при температуре выше О °С разлагается, нередко со взрывом, давая двуфтористый марганец, двуокись марганца и кислород . [c.108]

    Необходимо подчеркнуть, что приставка пер- не является свойственной только нерекисным соединениям [104]. Эта приставка, взятая из латинского и означающая полностью или совершенно , была впервые введена в химическую номенклатуру Томсоном [105] в 1804 г. в виде термина пероксид (перекись) для обозначения соединения, в котором металл соединен с максимально возможным количеством кислорода. Позже так обозначали соединения с максимальным количеством атомов других элементов, например перхлориды однако это название сейчас устарело. При такой системе термин пероксид водорода для различия между HgO и H.jO был совершенно правильным. Приставка пер- стала общепринятой, но с развитием представлений о природе химической связи были сделаны два значительных изменения 1) этимологическое значение было заменено обратным, а именно приставка пер- в названии соединения подразумевает Bbi ujee валентное состояние элемента в соединении с максимально возможным количеством кислорода или другого элемента [106) так, например, в слове перманганат достигнуто первоначальное намерение Томсона указать, что марганец соединялся с максимально возможным количеством кислорода, но при современном употреблении этого слова осповн<х внимание обращается на высшее состоя1ше окисления марганца, которое является следствием малой величины отношения количества атомов марганца к количеству атомов кислорода 2) было выяснено, что кислород соединяется в различных относительных количествах или имеет более чем одно состояние окисления. Это обстоятельство нельзя отразить одним лишь применением приставки пер- так, если РЬО. , двуокись свинца, называть перекисью свинца, то исчезает коренное различие в структуре между этим соединением и h thii-ной перекисью, например перекисью бария ВаО . [c.28]

    Необходимо заметить, что некоторые простые тела образуют окислы обоих главных родов, т.-е. основные и кислотные таков, напр., марганец, он образует основные закись и окись, и кислотные марганцовистый и марганцовый ангидриды. В промежутке будет та двуокись (или перекись), Мп02, о которой говорено выше она — слабое основание и слабый кислотный ангидрид. При этом всегда основные окислы заключают меньше кислорода, чем промежуточные, а они меньше, чем ангидриды кислот. Для большинства простых тел, однако, неизвестно всех родов окислов некоторые дают только одну степень окисления. Необходимо, сверх того, заметить, что существуют окислы, образованные соединением ангидридов кислот с основаниями, или вооби е окислов между собою. Собственно говоря, для каждого окисла, у которого есть и высшие и низшие степени окисления, можно было бы допускать, что он образован чрез соединение высшей степени окисления с низшею но такое предположение недопустимо в тех случаях, когда рассматриваемый окисел образует целый ряд самостоятельных соединений, так как окислы, действительно образованные чрез соединение двух других степеней окисления, таких самостоятельных или своеобразных соединений не дают, а во многих случаях распадаются на высшую и низшую степени окисления. Так как напряженность основных и кислотных свойств у окислов бывает весьма различною и некоторые окислы соединяются (дают соли) и с сильными основаниями, и с резкими кислотами, то в номенклатуре окислов, основанной на солеобразовании, есть немало условного, ведущего начало от исторических преданий. Поэтому ныне нередко окислам придают названия по числу атомов содержащегося кислорода, напр., SO- — двуокись серы, SO — трехокись серы, МпО — одноокись марганца, Мп Оз — полуторная окись МпО — двуокись и т. д. Но такая номенклатура игнорирует качества, а в химии они стоят на первом плане. Поэтому (ибо без исторической подкладки науки не мыслимы), с своей стороны, я прибегаю к номенклатуре количественного состава только для окислов, не обладающих резкими качествами оснований и кислот. МпО и РЬО лучше называть двуокисями, чем перекисями, так как у этих последних (гл. 4) должно признать особую совокупность свойств- Номенклатура, квк язык вообще, во всяком случае составляет дело условного соглашения, от нее зависит немало распространение знаний, но не самое существо их и не их содержание, ибо язык есть средство, а не цель усиленная забота об языке и словах показывает лишь продолжение детства народного (дикари обыкновенно красноречивы), ибо в мыслях, привычках и. делах (т.-е. отношениях к окружающему) преимущественно выражается жизнь человеческая — общая и личная. [c.453]


    С кислородом марганец образует пять простых оксидов закись (одноокись) марганца МпО, полутораокись МпаОд, двуокись МпО.,, трехокись (или марганцовистый ангидрид) МпОз и полусемиокись марганца (марганцовый ангидрид) МпзО,. Имеется и смешанный окисел МИ3О4 (или Мп0-Мп20з). [c.272]

    С кислородом марганец образует несколько окислов МпО — закись марганца, МпаОз — окись марганца, МпОз — двуокись марганца, МпОз — марганцовистый ангидрид, МпаО, — марганцовый ангидрид. Два низших окисла — МпО и МпзОз обладают только основными свойствами, МпОз — имеет амфотерный характер, а МпОз и МпзО, являются кислотными окислами, ангидридами кисдот. [c.282]

    С кислородом марганец образует пять простых оксидов закись (одноокись) марганца МпО, полутораокись MngOs, двуокись Мп0.д трехокись (илн марганцовистый ангидрид) МпОд и полусемнокись марганца (марганцовый ангидрид) MngO,. Имеется и смешанный окисел МпзО (или МпО -Мп Оз). [c.274]

    Марганец (VII). Перманганат, применяемый в кулонометрических титрованиях, генерируют из MnS04 в сернокислых растворах. При электролизе таких растворов наряду с МпОГ могут выделяться кислород и двуокись марганца. Однако в том случае, если потенциал рабочего электрода находится в пределах 1,43— 1,62 в относительно н. к. э., а генерирование ведут при силе тока - 9 ма и содержании в анолите >3,6 н. H2SO4 и 0,02—0,45 М MnS04, на платиновом аноде полу-чаются только перманганат-ионы [460—462]. [c.51]

    Двуокись марганца — непрочный окисел, однако при восстановлении ее до металла образуются последовательно МпгОз, МП3О4, МпО. Поскольку закись марганца — прочный окисел, марганец даже из такого непрочного окисла, как двуокись марганца, получить довольно трудно, несмотря на то что двуокись марганца отщепляет кислород при простом нагревании. Исключением из этого правила является закись железа (см. ряд прочностей окислов), которая при обычных температурах менее прочна по сравнению с другими окислами железа. [c.12]

    С кислородом марганец образует несколько окислов МпО — закись марганца, МП2О3 — окись марганца, МпОг — двуокись марганца, МпОд — марганцовистый ангидрид, МпгО, — марганцовый ангидрид. Два низших окисла — МпО и МпгОз обладают только основными свойствами, МпО2 — имеет амфотерный характер, а МпОз и МпаО, являются кислотными окислами, ангидридами кислот. [c.282]

    Сказанное выше легко иллюстрировать на примере марганца и его различных степеней окисления. Марганец с кислородом образует пять окислов, обладающих различными свойствами. Изменения степени окисления марганца от +2 до +7 сопровождается усилением кислотных и ослаблением основных свойств окислов. Закись марганца МпО — основной окисел окись марганца МпгОз также проявляет основные свойства двуокись марганца МпОг — наиболее устойчивый при обычных условиях окисел марганца, обладающий амфотерными свойствами марганцовистый ангидрид МпОз (в свободном виде не получен) и марганцевый ангидрид МП2О7 являются кислотными окислами. [c.129]

    Теория действия оксидаз. После того как Бертран нашел, что зола лакказы содержит марганец и что окислительная способность оксидазы пропорциональна содержанию в ней марганца, он предло-ншл для объяснения действия оксидазы следующую теорию оксидазы представляют собою белковые соединения марганца, способные диссоциироваться гидролитически, в которых марганец в виде закиси играет роль переносчика кислорода. Неактивная молекула кислорода расщепляется закисью марганца таким образом, что один атом кислорода идет на образование двуокиси марганца, в то время как другой переносится на окисляемое вещество (пирогаллол, гидрохинон и т. д.). Образовавшаяся двуокись марганца затем разлагается кислым радикалом оксидазы с выделением кислорода и регенерированием первоначального соединения. Эта теория опирается, таким образом, на известное представление Гоппе-Зейлера об активации кислорода и вызывает те же возражения, которые были высказаны по поводу последней теории. [c.19]

    Марганец. Равновесный потенциал марганца равен—1,05в. На воздухе марганец окисляется, образуя окислы фиолетового цвета (МпО, МпОг, MnOg, Мп О ). Самое устойчивое кислородное соединение этого элемента — двуокись MnOj. Как и железо, марганец горит на воздухе или в кислороде при нагревании. Он медленно разлагает воду на холоде и быстро при нагреве, образуя гидрат закиси марганца Мп (ОН)2 с выделением водорода. Марганец легко растворяется в разбавленных минеральных кислотах, при этом также выделяется водород и образуются соответствующие соли двухвалентного марганца. [c.17]

    Обычно считают, что вода, содержащая двуокись углерода в количестве, меньшем, чем это требуется для поддержания равновесия, является некор-розионно-активной. Однако, это не всегда соответствует действительности. Вода, в которой происходит самопроизвольное осаждение карбоната кальция в виде свободного липкого вещества (вследствие диссоциации неустойчивого бикарбоната кальция), и нет осаждения его на металле (вследствие катодной реакции), ни в коем случае не является некоррозионно-активной этот липкий осадок, препятствуя протеканию коррозионного процесса, может усилить его в тех местах, где происходит осаждение, благодаря дифференциальной аэрации Эти случаи рассматриваются в работах [58]. Хаасе рассматривает также распределение коррозии на трубах и ее тенденцию протекать на участках, где кислород не возобновляется. Он подчеркивает необходимость удаления органических веществ, если содержание кислорода в воде поддерживается на уровне, благоприятном для сохранения защитной пленки. Если органическое вещество удаляется с помощью флокуляции алюминатом натрия, то содержание кислорода будет оставаться неизменным (5 мг л) даже при длительном пребывании в трубах. Он приводит ряд примеров из практики в Солингене, где железо, марганец и органические соединения отделялись при фильтрации и хлорировании, после чего было обнаружено, что содержание кислорода в отдаленных участках трубы было такое же, как [59]. [c.153]


Смотреть страницы где упоминается термин Кислород из двуокиси марганца: [c.42]    [c.394]    [c.757]    [c.239]    [c.324]    [c.597]    [c.575]    [c.757]   
Лекционные опыты по общей химии (1950) -- [ c.107 ]




ПОИСК





Смотрите так же термины и статьи:

Исследование активированной адсорбции кислорода на гопкалите и двуокиси марганца

Марганец двуокись

Получение кислорода при взаимодействии двуокиси марганца с серной кислотой



© 2025 chem21.info Реклама на сайте