Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Носители белковые

    Принципиально важно, чтобы в иммобилизации фермента участвовали функциональные группы, не существенные для его каталитической функции. Так, гликопротеины обычно присоединяют к носителю через углеводную, а не через белковую часть молекулы фермента. [c.91]

    Белковые смеси анализируют электрофорезом на бумаге. Хроматографическую бумагу пропитывают буферным раствором, поддерживая тем самым необходимое значение pH. Наносят анализируемую смесь и создают электрическое напряжение. По истечении определенного времени (оно зависит от свойств разделяемых белков, носителя и приложенной разности потенциалов) проявляют электрофореграммы химическими и биохимическими методами. [c.216]


    Роль нуклеиновых кислот сводится, вероятно, к тому, чтобы удерживать белковую пленку шаблона в растянутом состоянии. В таком состоянии белковые пленки могут оставаться только под влиянием сил, действующих между поверхностями раздела. Эти силы вызывают развертывание пептидных цепей и удерживают их развернутыми в растянутой мономолекулярной пленке. Можно предположить, и это является весьма вероятным, что различные типы нуклеиновых кислот играют роль носителей белковых пленок шаблона и что замена одной нуклеиновой кислоты другой может до некоторой степени повлиять на образование копии. Это влияние не может, однако, проявиться особенно [c.410]

    При иммобилизации ферментов на носителях белковой природы нельзя не считаться с появлением диффузионных ограничений, определяемых гелевой структурой матрицы. Интересное решение проблемы диффузионных ограничений было найдено в случае использования в качестве носителей белков-глобулинов хлопчатника. Так как комплекс фермент-носитель способен находиться как в растворимой, так и в нерастворимой форме в зависимости от ионной силы раствора, то, изменяя последнюю, можно переводить комплекс в растворимую форму и облегчать, например, переработку нерастворимых в воде субстратов. Здесь укажем также, что подобным свойством обладают и некоторые синтетические полимеры, в частности полиэлектролиты и их комплексы, находящие все более широкое применение для иммобилизации ферментов. [c.18]

    Из сказанного выше вытекает, что кристаллическое состояние является важным и интересным для изучения, но все-таки одним из частных состояний твердого вещества. Не менее важно и интересно не периодическое, но регулярное состояние вещества. В подобном состоянии находятся высокомолекулярные, в частности, белковые вещества. При таком взгляде на твердое вещество кристаллическая решетка перестает быть основой для его изучения. И все наше внимание сосредоточивается на остове твердого вещества, тем более, что, как отмечалось выше, в отличие от абстрактной кристаллической решетки остов — реальный объект — непрерывная цепь, сеть или каркас, построенные из атомов, соединенных атомными связями. Остов может быть выделен в свободном состоянии, если в него входит достаточное количество вещества, равное, как, например, показывает опыт выделения кремнекислородных и углеродных остовов, по крайней мере 40% массы исходного твердого соединения. Остов — это носитель дальнего порядка, задаваемого межатомным взаимодействием. Отсюда следует, что изучение химического строения, конструирование и сборка атомных моделей вещества — старые надежные методы химического исследования — являются главными методами изучения твердого вещества. Вместе с тем настало время для конструирования и химической сборки твердых веществ и притом не только сравнительно простых, но и самых сложных веществ, в том числе различных материалов. При этом, конечно, следует руководствоваться не только химическими соображениями. Необходимо принимать также в расчет выводы теории устойчивости и прочности материала. Эта теория целиком основывается на учете межатомного и межмолекулярного взаимодействия и химического строения. Например, жесткость материала характеризуется модулем Юнга Е. При этом исходят из того, что, нагружая твердое вещество, мы действуем непосредственно на его межатомные связи. Отсюда ясно, что различие величины Е для разных веществ обусловлено различием жесткости самих химических связей. Модуль Юнга равен для алюминия всего 0,8-10 кГ/мм , для сапфира—4-10 а для алмаза 12-Ю кГ/мм . Именно исключительная прочность и жесткость связей С — С в алмазе делает его самым твердым и жестким из твердых веществ. [c.243]


    Во-первых, даже в с учае хорошо изученных биокатализаторов имитация их конструкций далеко не всегда дает должный эффект, так как активность и особенно специфичность биокатализаторов определяется рядом других компонентов биосистемы, например белковым носителем, структурой органеллы, средой клетки и т. д. Все эти стороны биокатализаторов, как отмечает Николаев, практически не моделировались вовсе. [c.182]

    Широкое распространение в настоящее время получил так называемый зональный электрофорез — электрофорез на твердом носителе (на бумажных полосах, агаре, крахмале, акриламиде), пропитанном буферным раствором с нужным значением pH. Положение белков на бумаге или геле определяют путем фиксации и последующего окрашивания их тем или иным красителем (обычно бромфеноловым синим, ами-довым черным или кумасси синим). Количество белка в каждой фракции можно ориентировочно определять по интенсивности окраски связанного красителя. Такое определение не дает строго количественного соотношения белковых фракций, так как количество красителя, связываемого различными белками, неодинаково. [c.89]

    Число белков, химическое строение которых полностью рас-шифровано растет с каждым годом. При сопоставлении полученных результатов обнаружились два чрезвычайно интересных факта прежде всего оказалось, что хотя у разных представителей животного мира строение определенного гормона очень сходно, однако все же существуют четкие видовые отличия. Так, например, инсулин, выделенный из организма кита и свиньи, совершенно тождествен, в то время как в инсулине лошади одна из 51 аминокислот заменена на другую. С другой стороны выяснилось, что носителем биологической активности может быть не вся белковая молекула, а определенная часть ее. Так, в растительном ферменте — папаине, построенном из 180 аминокислотных остатков, можно [c.335]

    Белки являются матери-альными носителями жизни. Связь жизни с белками отмечена Ф. Энгельсом Жизнь есть способ существования белковых тел... Повсюду, где мы встречаем жизнь, мы находим, что она связана с каким-либо белковым телом, и повсюду, где мы встречаем какое-либо белковое тело, не находящееся в процессе разложения, мы без исключения встречаем и явления жизни (Маркс К., Энгельс Ф. Соч., т. 20, с. 82—83). [c.354]

    Для некоторых организмов было доказано, что ДНК является носителем наследственности клетки. Остальная часть клетки содержит рибосомальную (80%) РНК, растворимый (клеточный сок 10—15%) РНК и информационную (5—10%) РНК. Последний, как можно полагать, управляет синтезом белка, выполняя роль матрицы, на которой собирается белковая -молекула. [c.69]

    Витамин Bi, открытый Функом (1912), является вторым из наиболее известных витаминов он содержится в дрожжах, зародышах и оболочках злаковых культур, а также в хлебе, изготовленном из муки простого помола. В продуктах витамин Bj встречается как в свободном, так и в связанном виде, в последнем случае он фосфорилирован и соединен с белковым носителем являясь таким образом коферментом карбоксилазы. Поэтому он тесно связан с углеводным обменом. Недостаточность витамина Bj в организме человека может выразиться в накоплении в тканях молочной и пировино-градной кислот, что приводит к развитию полиневритов и нарушению сердечной деятельности. Полное отсутствие витамина Bi в пище ведет к развитию тяжелой формы авитаминоза — болезни бери-бери. [c.665]

    Коферменты (от лат. со — вместе и ферменты) — органические вещества небелковой природы, составляющие вместе с белком (называемый белковым носителем) молекулы некоторых ферментов. Многие К. являются производными витаминов. Содержатся в большинстве животных и растительных организмов. К К. относятся кофермент А, кодегидразы, кокарбоксилаза, адениловая система и др. [c.72]

    В 1971 г. на первой конференции по инженерной энзимологии был узаконен термин иммобилизованные ферменты . Однако в понятие иммобилизация в настоящее время вкладывают более широкий смысл, чем связывание на нерастворимом носителе, а именно — полное или частичное ограничение свободы движения белковых молекул. [c.85]

    Адсорбция ферментов на нерастворимых носителях. При адсорбционной иммобилизации белковая молекула удерживается на поверхности носителя за счет электростатических, гидрофобных, дисперсионных взаимодействий и водородных связей. Адсорбция была первым методом иммобилизации ферментов (Дж. Нельсон, [c.88]

    Нуклеотиды в виде своих более или менее сложных производных составляют основу большой и важной группы коферментов. Как хорошо известно, ферментные системы состоят из белковой части, которая обеспечивает фиксацию субстрата и специфичность фермента и носит обычно название апофермента и кофермента, который с белком-носителем и обеспечивает протекание самой катализируемой ферментом реакции. [c.229]

    Принцип и ограничения метода. Техника электрофореза основана на принципе дифференциальной подвижности белковых молекул в поддерживающей среде, или носителе (крахмал, полиакриламид, ацетат целлюлозы и др.), под действием электрического тока. Подвижность есть функция суммарного электрического заряда молекулы, который зависит от ионизации аминокислот белка и отсюда — от pH, а также от размеров молекулы белка. [c.39]


    Электрофорез в градиенте концентрации. Здесь опять речь идет о методе, при котором определяющую роль играет размер молекулы белка. Носитель состоит из полиакриламидного геля возрастающей концентрации (например, от 2 до 16 или от 3 до 30 % акриламида). В этом градиенте пористости белковые молекулы тормозятся, т. е. останавливаются, по мере того как ячейки сетки становятся все более мелкими. [c.40]

    В настоящее время разработаны иммунологические методы определения КБА. В этих методах для иммзшологической регистрации КБА, образующихся при появлении в нем канцерогенных веществ, используются антитела, полученные с помощью азопротеинов, содержащих канцерогенное вещество, присоединенное ковалентной связью к носителю белковой природы. При помощи иммунологических методов КБА обнаруживаются в биологических жидкостях в период инициации экспериментального канцерогенеза у животных, у больных с опухолями и у рабочих с профессиональным онкологическим риском. Образование КБА коррелирует с канцерогенезом, и поэтому они могут служить эффективными маркерами рака и онкологического риска. Однако следует отметить, что при иммунизации животных конъюгатами канцерогенов с белковыми носителями неизбежно индуцируются побочные антитела против общевидовых антигенов, что затрудняет интерпретацию результатов определения канцерогенов в биологических материалах. Побочные антитела ограничивают специфичность антисывороток к гаптенам (веществам, к которым вырабатываются антитела в организме), особенно при необходимости их регистрации в крови человека. [c.184]

    Химическая природа ферментов чрезвычайно сложна и до сих пор не может считаться установленной. В настоящее время считают, что всякий фермент состоит из двух частей носителя — белкового вещества и простетшеской активной группы. Каждая из них раздельно не может действовать как фермент, и только в виде соединения они обнаруживают свойства, характерные для ферментов. [c.285]

    Целевым назначением процесса, разработанного в Германии (бывшей ГДР), является получение из дистиллятных, преимущественно керосиновых и дизельных фракций жидких нормальных парафинов высокой степени чистоты и низкозастывающих денор— мализатов — компонентов зимних и арктических сортов реактивных и дизельных топлив. Получаемые в процессе "Парекс" парафины используются как сырье для производства белково-витаминных концентратов, моющих средств, поверхностно-активных веществ и др/гих продуктов нефтехимического синтеза. Сырьем процесса является прямогонный керосиновый дистиллят широкого или узкого фракционного состава (в зависимости от требований, предъявляемых к продуктам), который предварительно подвергается гидроочистке. В качестве адсорбента используется цеолит типа цеосорб 5АМ (типа СаА). Используемый адсорбент — цеолит, обладающий молекулярно-ситовым эффектом, избирательно адсорбирует н-алканы из смесей их с углеводородами изо- или циклического строения. Характерной особенностью процесса "Па — реке" является проведение адсорбции в среде циркулирующего во, ородсодержащего газа, являющегося газом-носителем сырья. Применение циркулирующего газа-носителя препятствует быс — [c.269]

    Значительное количество этилена расходуется на производство окиси этилена. В большинстве )азвитых стран окись этилена получают каталитическим окислением этилена. Наиболее распространенный катализатор — серебро на носителе. Основное количество (58%) окиси этилена используется в производстве этиленгли-коля — для антифризов, полиэфирных волокон и других продуктов. Окись этилена является также исходным материалом в производстве гликолей большой молекулярной массы, сложных эфиров, этаноламина и поверхностно-активных веществ. Гидратацией этилена получают этиловый спирт, который применяется в производстве бутадиена. Однако этот способ менее экономичен по сравнению с производством бутадиена из бутана и бутилена. Перспективным направлением использования этилового спирта является производство белково-витаминных концентратов (БВК). [c.182]

    Молекулы большинства ферментов состоят из двух составных частей, по отдельности лишенных активности а) термолабильная белковая часть, называемая носителем или апоферментом и б) небелковая, термостабильная часть, называемая коферментом, играющим очень важную роль в действии фермента. Обе эти части составляют полный фермент (голофермеит). [c.257]

    Очистка масляных дистиллятов сериым ангидридом. Для получения высококачественных белых ыасел, нафтенового компрессорного масла, а также парафина для пищевой и белково-витаминной промышленности проводят очистку сырья олеумом. При получении белых масел сульфирующий агент —серный ангидрид — либо растворен в серной кислоте (очистка олеумом), либо смешан с газом-носителем (очистка газом). Очистка газом имеет следующие преимущества перед очисткой олеумом уменьшение количества кислого гудрона, увеличение количества маслорастворимых сульфонатов, которые можно использовать в качестве моющих присадок и ингибиторов коррозии. [c.65]

    Хотя теоретическая основа многих выводов Бернала и Фанкухена и осталась для меня туманной, одно было ясно ВТМ состоит из большого числа одинаковых субъединиц. Как они расположены, Бернал и Фанкухен не знали. К тому же в 1939 году еще нельзя было предположить, что белковая часть вируса и его РНК устроены совершенно по-разному. И если теперь белок, состоящий из множества субъединиц, легко представить, то для РНК такое строение было немыслимо. Если бы она делилась на большое число субъединиц, то полинуклеотидные цепи были бы слишком коротки и не могли бы вмещать генетическую информацию, носителем которой, по нашему с Фрэнсисом убеждению, [c.67]

    Важно уяснить, что именно основания, пуриновые или пиримидиновые, являются носителями генетической информации, подобно тому как боковые цепи аминокислот определяют химические и функциональные свойства аминокислоты. Носитель наследственной информации — молекула ДНК — организована в клетке в структурные единицы — гены. Эти последние в свою очередь локализованы в особых структурах — хромосомах, которые находятся в ядре животных или растительных клеток. Именно ген содержит информацию, определяющую специфический признак цвет глаз и волос, рост, пол и т. д. Однако для описания на молекулярном уровне ген — довольно сложное образование, так как число молекулярных стадий при реализации конкретного признака может быть весьма велико. Отметим, что любой генетический признак реализуется с помощью белкового синтеза (структурного белка либо фермента), и введем понятие более простого элемента — цистрона. Цистрон определяют как часть ДНК, которая несет генетическую информацию (кодирует) о синтезе лищь одной полипептидной цепи. Хромосома содержит много сотен цистронов. Все количество ДНК, содержащееся в клетке, называется геномом. [c.108]

    Значительное развитие хроматография получила после того, как в 1941 г. в основу разделения смеси веществ Мартином и Син-джем было положено различие в коэффициентах распределения анализируемых веществ между двумя десмешивающимися жидкостями. Был предложен новый вариант хроматографического метода — распределительная хроматография. После того как в качестве носителя неподвижной жидкой фазы стали применять бумагу, распределительная хроматография получила весьма широкое распространение, причем ей было суждено сыграть важную роль в изучении строения белковых веществ. [c.10]

    Особое значение белков заключается в том, что они являются главным носителем жизни. Ф. Энгельс в свое время отметил, что жизнь есть способ существования белковых гйел .  [c.170]

    С другой стороны, выяснилось, что носителем биологической активности оказывается не вся белковая молекула, а определе1шая часть ее. Так, в растительном ферменте папаине, построенном из 180 аминокислотных остатков, можно отстричь до двух третей его полипептидной цепи без заметного влияния на биологическую активность. Факты подобного рода позволяют глубже понять природу каталитического действия ферментов, а следовательно, приближают возможности создания синтетических ферментов, с помощью которых можно надеяться упростить получение многих нужных человеку органических веществ, решить важные проблемы медицины и т. д. [c.343]

    По результатам работ проведено изучение возможности получения стабильных эмульсий животных жиров для последующей биотрансформации в присутствии липаз, установлены оптимальные условия биодеградации животньос жиров в составе жиро-белковых эмульсий. Изучена возможность и определены условия эффективной биотрансформации животных жиров с высоким содержанием предельных жирных кислот на поверхности твердых носителей. Определена методология гюлучения биотрансформатов с улучшенным химическим составом из жиров животного происхождения для последующего получения полноценных питательных добавок. [c.175]

    Двухкомпонентные ферменты (сложные белки, протеиды) наряду с белком содержат небелковую часть, ответственную за каталитическую активность и называемую агоном, простетичес-кой группой или коферментом. Простетическая группа прочно связана с белком, кофермент, наоборот, легко отделяется, например, при нагревании, диализе и способен к самостоятельному существованию. Белковая часть служит носителем (фероном, апоферментом) активной группы и одновременно резко повышает ее каталитическую активность. В свою очередь кофермент и простетическая группа стабилизируют белковую часть и делают ее менее уязвимой к денатурирующим агентам. [c.116]

    С исследовательскими целями широко применяют полностью синтетич. А., напр, полимеры аминокислот. Антитела к полипептидам из D-аминокислот не реагируют с полипептидами из L-аминокислот, и наоборот. Участок этих А., непосредственно контактирующий с антителами, состоит из 5-6 аминокислотных остатков. Синтезиров. участок белковой молекулы, будучи прикрепленным к макромолеку-лярному носителю, может вызьшать образование антител. При использовании синтетич. участков вирусных белков получаемые антитела нейтрализуют вирусную активность. Таким путем пытаются приготовить синтетич. вакцины, которые должны быть лишены мн. недостатков обычных вакцин. К синтетич. полинуклеотидам можно получить антитела, если использовать их в комплексе с метилированным альбумином. См. также Иммуноглобулины, Интерлейкины. [c.174]

    Органические полимерные носители. Иммобилизация многих ферментов осуществляется на полимерных носителях органической природы. Существующее органические полимерные носители можно разделить на два класса природные и синтетические полимерные носители. В свою очередь, каждый из классов органических полимерных носителей подразделяется на гругшы в зависимости от их строения. Среди природных полимеров выделяют белковые, полисахаридные и липидные носители, а среди синтетических — полиметиленовые, полиамидные и полиэфирные. [c.86]

    В период между 1944 н 1954 гг. развивались аналитические исследования по выделению, очистке и определению строения пептидов с высокой биологической активностью, а также методические разработки в области синтеза, например в 1950 г. был разработан метод смешанных ангидридов (Виланд, Буассона, Воган). Эти успехи сделали возможным химический синтез природных пептидов, обладающих биологической активностью. В 1953 г. дю Виньо удалось синтезировать первый пептидный гормон — окситоцин. Эта работа была удостоена Нобелевской премии за 1955 г. В следующие годы наступило бурное развитие синтетической пептидной химии, было предложено несколько новых защитных групп, эффективные методы кои-деисаш1и и иовые методические варианты, такие, как разработаниь й Меррифилдом в 1962 г. пептидный синтез иа полимерных носителях. Химический синтез инсулина и рибонуклеазы ознаменовал переход к белковому синтезу. [c.100]

    Предполагается, что пептидные гормоны (инсулин, пролактии, гормон роста, паратиреоидный гормон, гонадотропин, гормоноподобные факторы роста и др.) также могут проникать через клеточную мембрану внутрь клетки [575]. Это предположение уже выдвигалось в 50-х годах двумя группами исследователей, но эндокринологи настаивали на концепции взаимодействия пептидных гормонов исключительно лишь со связанными с мембраной рецепторами. Согласно современным воззрениям, такие трудноин-терпретируемые долговременные эффекты, как, например, влияние на рост клетки и белковый синтез в случае инсулина, Можно объяснить, лишь принимая возможность проникновения гормона в клетку. Кратковременные эффекты могут быть вызваны, по существующему представлению, обычным путем, т. е. взаимодействием с рецептором, связанным с мембраной. Относительно процесса входа в клетку существуют различные точки зрения, как, например, совместное действие высокомолекулярного белка-носителя (а2-макроглобулин для инсулина или эпидермального фактора роста) или совместное с рецептором клеточной стенки проникновение гормона в клетку. Но в общем случае ясность в вопросе о функциях полипептидного гормона в клетке пока отсутствует. Дискуссируются следующие предположения  [c.235]

    При электрофорезе заряженные частички под влиянием электрического поля движутся с различной, зависящей от отнотения заряда к массе скоростью к аноду или катоду н таким образом могут быть отделены друг от друга. Различают электрофорез без носителя, при котором белковые молекулы движутся непосредственно в потоке буфера, и электрофорез с носителем (зонный электрофорез), при котором в качестве носителя используют различные материалы. [c.350]

    Изоэлектрическое фокусирование [42 — 45] в линейном градиенте pH позволяет разделить белки, характеризующиеся различными изоэлектрическими точками. Для создания градиента используют носители с цвнттер-ионными свойствами — алифатические полиаминополикарбоновые кислоты, имеющие М 200 — 700. При движении в градиенте pH суммарный заряд белка постоянно меняется, и в области pH, близких к изоэлектрической точке, становится равным нулю. Соответствующий белок фокусируется , образуя узкую зону. При препаративном фокусировании в колонке стабилизация градиента pH осуществляется с помощью градиента плотности используемого буферного раствора, однако чаще работают с плоскими слоями полиакриламидного или гранулированного геля. Опубликовано краткое сообщение о непрерьтном электрофокусировании без носителя [46]. Эффективность электрофокусирования высока. Так, возможно, например, разделить белки, различающиеся по ИЭТ лишь на 0,01 единицы pH. При разделении сыворотки образуется более 40 белковых полос. [c.351]

    Пористое стекло (диаметр пор 5 — 250 нм), как и наиболее широко применяемые носители иа основе агарозы, отличается низкой неспецифической сорбцией и высокой емкостью. Аффинная хроматография нашла широкое применение при разделении ферментов, полнпептидных и белковых гормонов, антител, антигенов, а также транспортных и рецепторных белков. [c.354]


Смотреть страницы где упоминается термин Носители белковые: [c.67]    [c.92]    [c.909]    [c.169]    [c.200]    [c.142]    [c.119]    [c.120]    [c.123]    [c.179]    [c.152]    [c.261]    [c.565]    [c.572]   
Иммобилизованные ферменты (1987) -- [ c.16 , c.18 , c.30 ]




ПОИСК







© 2025 chem21.info Реклама на сайте