Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Марганец валентность

    К побочной подгруппе седьмой группы относятся -элементы марганец Мп, технеций Тс и рений Ке — полные электронные аналоги. Валентными у них являются (п—1)й /15 -электроны  [c.387]

    Марганец и хлор находятся в VII группе периодической таблицы, но хлор — в главной подгруппе, а марганец — в побочной. Формально они могут проявлять максимальную валентность (7 + ) и давать соединения с меньшими степенями окисления, причем марганец как элемент побочной подгруппы должен иметь мало сходства с хлором — элементом главной подгруппы. (Электронная конфигурация марганца дана в задаче 15.) Электронная конфигурация хлора С1 следующая  [c.379]


    Марганец Мп, технеций Тс и рений Ке — полные электронные аналоги с конфигурацией валентных электронов п— )д. п . Они объединяются в подгруппу марганца. Некоторые сведения об этих элементах приведены ниже  [c.568]

    Какие валентности и степени окисления проявляет марганец в соединениях Какие валентные состояния наиболее устойчивы для марганца  [c.168]

    Марганец Мп, технеций Тс и рений Re — полные электронные аналоги с конфигурацией валентных электронов п—l)d ns  [c.324]

    В соответствии с возможными валентными состояниями марганец образует несколько оксидов МпО, МП3О4, МпгОз, МпОг, МпОз, МпгО . Наиболее устойчив к воздействию атмосферы диоксид марганца МпОг, так как на воздухе оксид МпО окисляется кислородом до МпОг, а МпОа устойчив к действию О2 и не превращается в МпОз или МпгО . Характер изменения кислотно-основных свойств оксидов марганца и соответствующих им гидроксидов связан с валентным состоянием элемента  [c.292]

    Высшая положительная валентность марганца равна семи, и и марганец в таблице Менделеева помещен в УП группу. Высшая [c.87]

    Требует выяснения связь между валентностью и положением элемента в периодической системе. Почему благородные газы не имеют валентности, а, например, марганец обладает переменной валентностью  [c.463]

    Марганец - Мп, 2=25. Электронная кон- Т Т[Т Т Т 4з 4р фигурация валентного слоя 3(1 45 3(] [c.318]

    Марга.нец же и рений склонны к образованию комплексов. При этом марганец проявляет валентность +7, +6, +4, +3 и + 2, а рений +7, -f6, -t-5, -Ь4, -ЬЗ. Комплексы рения, как правило, характеризуются большей устойчивостью, чем соответствующие производные марганца. [c.210]

    В процессе изучения факторов, влияющих на степень химической деструкции НПАВ в пластовых условиях конкретных месторождений, были проведены спектральные анализы пород. При этом было установлено присутствие в них значительного количества металлов переходной валентности (медь, марганец, цирконий, кобальт, никель), которые, как известно, обладают каталитической активностью. Предварительными лабораторными опытами по определению химической деструкции НПАВ было установлено, что на стабильность последних существенное влияние оказывают сера и ее соединения. Поэтому при анализе пород различных нефтяных месторождений особое внимание было уделено содержанию серы (табл. 5). [c.28]

    Атомы марганца, технеция и рения, отличаясь числом внутренних электронных слоев, имеют на внешнем слое 2 электрона, а на соседнем с внешним (8+5) электронов при окислении они могут максимально терять 7 электронов, проявляя положительную валентность, равную 7. Марганец, кроме того, образует соединения с положительной валентностью, равной 2, 3, 4, 5 и 6. Для рения известны соединения с валентностью 3, 4, 5 и 6. Технеций по своим химическим свойствам ближе к рению, чем к марганцу.  [c.316]


    Катализаторами, ускоряющими окисление бензинов и дизельных топлив при хранении, могут быть металлические поверхности резервуаров и трубопроводов, а также оксиды и соли, покрывающие эти поверхности. Ускорение окисления вызывается, кроме того, оксидами и солями металлов, которые могут находиться в топливах в виде тонкодисперсной взвеси. Каталитическую активность в основном проявляют металлы переменной валентности— железо, медь, хром, марганец, кобальт [66]. [c.58]

    Валентность марганца изменяется в широких пределах (от одного до семи). Особенно устойчивы крайние валентные состояния (II и VII). В состояниях высших валентностей марганец проявляет основные свойства, в промежуточных — амфотерные, в высоких — кислотные. [c.212]

    Гидроокись аммония обычно применяют в присутствии аммонийных солей, которые значительно уменьшают ее диссоциацию. Наиболее часто этот метод применяется при отделении алюминия, железа и титана от кальция, магния и ряда других катионов. Значительные затруднения при этом вызывает марганец, который при малом избытке гидроокиси аммония не осаждается в виде Мп(0Н)2, однако под влиянием кислорода воздуха окисляется и частично осаждается в виде гидрата окисла высшей валентности. Поэтому при большом количестве марганца осаждение его гидроокисью аммония ведут в присутствии окислителей, например надсернокислого аммония. В этом случае марганец количественно переходит в осадок вместе с алюминием и железом. Осадок гидроокисей алюминия и железа обычно захватывает часть кальция и магния. Поэтому при точных анализах осадок, после отделения его фильтрованием, растворяют в соляной кислоте и повторяют осаждение. Чтобы уменьшить переход в осадок кальция и магния, при осаждении лучше избегать значительного избытка гидроокиси аммония с этой целью осаждение удобно вести в присутствии индикатора, например метилкрасного, который при pH 5 изменяет цвет от красного к желтому. [c.96]

    Как показано на рис. III.7, примесные атомы алюминия и фосфора замещают атомы кремния в узлах решетки. Энергетическая однородность кристалла при этом нарушается. Атомы алюминия имеют лишь по три валентных электрона, что приводит к дефициту одного электрона в каждом занимаемом ими узле кристаллической решетки. Однако при сообщении атому алюминия небольшой энергии порядка 5,5 кДж/моль он захватывает недостающий электрон, превращаясь в отрицательно заряженный ион и образуя вблизи себя положительно заряженную дырку. Электрическая нейтральность кристалла при этом сохраняется. Аналогичное алюминию действие оказывают на свойства полупроводниковых кремний и германия примеси и других элементов, таких, как бор, галлий, индий, цинк, железо, марганец. Их называют акцепторными примесями. [c.80]

    Мы видим, что марганец в состоянии проявлять переменную положительную валентность. Соединений, в которых марганец участвовал бы с положительной валентностью, большей семи, неизвестно. Таким образом, +7 для марганца является высшей положительной валентностью. Другие валентности этого элемента (+2, +3, +4 и +6) являются низшими. [c.87]

    Малое число электронов во внешнем слое (два) не создает условий для пополнения его до октета. Поэтому элементы марганец, технеций и рений не в состоянии образовывать отрицательно валентные ноны и не дают газообразных водородистых соединений. В химических реакциях проявляют только положительную валентность. [c.529]

    Несколько по-иному решается вопрос о валентностях элементов побочных подгрупп, или -элементов. У этих элементов в образовании химических связей наряду с электронами внешней оболочки принимают участие также электроны предвнешней оболочки, находящиеся на -орбиталях. Если у элементов главных подгрупп все неспаренные электроны внешней оболочки валентны и принимают участие в образовании химических связей, то для неспаренных -электронов предвнешней оболочки это вовсе не обязательно. Рассмотрим, например, хром и марганец. Строение внешних и предвнешних оболочек их атомов в основном состоянии см. в табл. 7. В наиболее характер-ных валентных состояниях строение валентных оболочек мож но представить следующим образом  [c.77]

    Соли марганца (II) можно получить, как мы уже видели выше, действием кислот на металлический марганец и на кислородные его соединения. Кроме того, их получают действием кислот на углекислый марганец или раскислением соединений марганца высшей валентности. [c.339]

    Марганец образует соединения, дающие возможность наглядно проследить влияние изменения валентного состояния на свойства. Хорошо изучены его производные, отвечающие следующим окислам  [c.297]

    Выделение п-ксилола с помощью клатратных соединений. В последние годы был открыт класс неорганических комплексных соединений, которые способны образовывать молекулярные соединения с углеводородами [105]. Они получили название клатратных соединений [106]. Наиболее пригодны для образования клатратных соединений с углеводородами комплексы общей формулы МР4Х2, где М — элемент переменной валентности Р — пиридиновый остаток X — анион. Из ионов металлов наилучпше результаты дают двухвалентные никель, кобальт, марганец и железо. Наиболее пригодные азотистые основания — замещенные в 3- или 4-положении пиридины, а также хинолины. Анионом может быть простой одноатомный ион — хлор или бром, или многоатомный ион — тиоцианат, формиат, цианат, или нитрат [76, с. 235—298, 107]. [c.129]


    Марганец с валентностью +1 встречается в редких неустойчивых комплексных соединениях. [c.316]

    В большинстве случаев галоидирование ускоряется под действием светового облучения (длина волны 3000—5000 А) или высокой температуры (в присутствии катализатора или без него). В качестве катализаторов обычно применяют галоидные соединения металлов, имеющих два валентных состояния, способные отдавать атомы галоидов при переходе из одного валентного состояния в другое, — P I5, P I3, Fe lg. Используют также хлористую сурьму или хлористый марганец, а также неметаллические катализаторы — иод, бром или фосфор. [c.259]

    Было выяснено, что паивысшие результаты получаются с жидкостями, которые с чисто-химической точки зрения являются наиболе)е активными. Среди неорганических соединений наиболее легко адсорбируются растворы таких веществ, у которых высокий молекулярный вес соединеп с высокой же валентностью, как например марганец, [c.212]

    Технеций — тяжелый металл плотностью 11,50, кристаллизуется в ге-к aгoнaлIj нoй плотной упаковке и плавится при 2127° С. По химическим свойствам он больше похож на рений, чем на марганец. Наиболее характерна для него валентность 7. Он сгорает в кислороде с образованием желтоватого ангидрида T gO, Последний при растворении в воде образует сильную одноосновную технециевую кислоту. Известны соли типа МеТсО,, которые по своей окислительной активности занимают промежуточное положение между перманганатами и перренатами. [c.344]

    Жидкофазное каталитическое окисление псевдокумола и дурола в присутствии брома и солей металлов переменной валентности (кобальт, марганец, молибден) с получением 1три-мелитовой и пиромелитовой кислот и ангидридов. [c.35]

    Уже давно в масла, на основе которых готовят к >аски и лаки, а также в алкидные смолы, чтобы ускорить их высыхание и твердение, добавляют катализаторы, известные под названием сиккативы, или сушки. Интересно сравнить действие сиккативов и катализаторов, описанных в предыдущем разделе, В обоих случаях используются одни и те же элементы с переменной валентностью и в обоих случаях они образуют с органическими молекулами растворимые соединения. Кобальт и марганец при комнатной температуре и церий при температуре затвердевания инициируют высыхание за счет образования промежуточьых продуктов, обладающих окислительными свойствами. Другие элементы типа свинца, цинка, кальция и циркония дополняют действие кобальта и марганца, облегчая процесс полимеризации. В отсутствие кобальта или марганца, иницируюших процесс высыхания, полная реакция полимеризации протекала бы значительно медленнее /40/. [c.291]

    В пер1юм случае двуокись марганца МпОз является окислителем, поскольку входящий в ее состав марганец в результате реакции понижает свою валентность (четырехвалентный марганец восстанавливается до двухвалентного). Во втором случае МпОз является восстановителем, так как марганец в результате реакции повышает свою валентность (четырехвалентный марганец окисляется до семивалентного). [c.53]

    Если в состав молекул некоторого вещества входят химические элементы в своих высших валентных состояниях, то такое соединение в химических реакциях может выступать лишь в роли окислителя. В частности, в состав молекул хлорной НСЮ4, марганцевой НМПО4, серной Нз504, азотной НЫОз кислот хлор, марганец, сера и азот входят в своих высших валентных состояниях. Поэтому в данном случае эти химические элементы уже не могут отдавать электроны и ни одна из названных кислот не может быть восстановителем ни при каких условиях. Эти кислоты — типичнейшие окислители, причем их окислительная способность существенно возрастает с повышением концентрации в растворе. [c.53]

    Таким образом, хром, будучи типичным металлом в свободном виде, в шестивалентном состоянии образует соединение хромовую кислоту Н2СГО4, аналогичную по строению и подобную по некоторым свойствам на серную кислоту,— со единение, образуемое типичным неметаллом. Такие же особеН ности характерны и для многих других элементов побочных подгрупп. Например, металл марганец в семивалентном состоянии образует марганцевую кислоту НМ.ПО4, по составу и некоторым свойствам напоминающую хлорную кислоту H IO4. Из сказанного можно сделать вывод, что и металлы, и неметаллы в одинаковых валентных состояниях, соответствующих номерам групп, в которых они находятся, могут образовывать сходные по составу и отдельным свойствам соединения. Причина этого заключается в подобии строения внешних электронных обдлочек атомов элементов главных и побочных подгрупп в валентных состояниях, равных номерам групп. В данном случае речь идет о тех внешних электронных оболочках, которые остаются за вычетом электронов, принявших участие в образовании химической связи. Поясним сказанное примерами  [c.274]

    При протекании этого процесса четырехвалентная сера окисляется до шестивалентного состояния, а семи-валентный марганец восстанавливается до шестнвалент-ного [c.57]

    Элементы, обладающие постоянной валентностыв, образуют оксиды только одной из перечисленных групп (основные, кислотные, амфотерные). Элементы, проявляющие переменную валентность, могут образовывать различные оксиды. Например, марганец образует пять оксидов МпО, МпгОз, МпОг, МпОз и МП2О7. Два первых из них — основные, третий — ам-фотерный, а два последних — кислотные оксиды. [c.28]

    Очень важно обратить внимание на следующее. Если в малых периодах с увеличением заряда ядер атомов все химические свойства элементов изменяются последовательно, то в больших периодах некоторые свойства элементов повторяются внутри самого периода. Например, в четвертом периоде мол<но выделить пары элементов, которые при одинаковой валентности образуют сходные по форме и по некоторым свойствам соедпнения. К таким элементам относятся марганец и бром, хром и селен, ванадий и мышьяк и другие (НМпО и НВГО4 Н2СГО4 и Н25е04). [c.57]

    Отсюда видно, что в возбужденном состоянии максимальное число электронов, участвующих в образовании химической связи, доходит до семи (например, в 1 Д1п04). Марганец может проявлять и промежуточные значения валентностей (см. задачу 16), [c.378]

    Марганец с кислородом образует несколько окислов, обладающих различными свойствами. Увеличение валентности марганца от (2+) до (7-1--) сопровожда- [c.379]

    Марганец принадлежит к элементам побочной подгруппы VII группы периодической системы элементов Д. И. Менделеева. Конфигурация его валентных электронных подуровней выражается формулой 3dHs . Обладая семью валентными электронами, марганец может проявлять степени окисления -f-2, - -3, -f4, +6, +7, которым соответствуют оксиды  [c.262]

    Марганец, обладая более устойчивым строением валентного слоя электронов (d s ), в меньшей степени склонен к образованию металлообразных соединений. Марганец и рений образуют только силиды, обладающие металлической электропроводностью, а карбиды, нитриды и бориды этих металлов электропроводностью такого типа не обладают. [c.123]

    В чистом виде марганец — серебристо-белый, твердый, хрупкий металл, по внешности похожий на железо. На воздухе покрывается тонкой окисной пленкой, придающей металлу красноватый оттенок. Пленка предохраняет металл от окисления даже при нагревании его. Разведенные соляная и серная кислоты взаимодействуют с марганцем с выделением водорода и образованием солей двухвалентного марганца (МпС12, Мп504). Азотная и концентрированная серная кислоты, окисляя металл, дают соли, содержащие марганец различных степеней положительной валентности его. При нагревании марганец разлагает воду и реагирует со многими металлами и неметаллами. [c.530]

    В своих химических соединениях марганец проявляет переменную валентность, главным образом равную +2, 4-3, +4, +6 и +7. Известны соединения и 4-5-валентного элемента, например КазМп04 7Н2О — малоустойчивая синяя соль. [c.530]

    Манганаты — соли, в частности, формулы М МпО , например К2МПО4— манганат калия. Содержат шестивалентный марганец. Получают окислением соединений марганца низших степеней валентности. Манганаты (например, К2МПО4) образуют зеленые растворы (зеленый цвет принадлежит манганат-иону МПО4"). [c.531]

    КМПО4 энергично окисляет многие неорганические и органические вещества. Выделяет хлор из соляной кислоты, превращает двухвалентное железо в трехвалентное и т. д. При этом валентность марганца, равная - -7 (в КМПО4 и НМПО4), понижается. Степень понижения зависит от того, в каких условиях работает окислитель в кислой среде марганец восстанавливается до Мп - иона, а в нейтральной— до МпОз. Примеры приведены на стр. 295. [c.532]

    Можно разделить катионы металлов, используя способность некоторых из них окисляться до высших степеней валентности. Хром и марганец после окисления их до хромат- и перманганат-ионов легко отделить на катионитной колонке от железа, алюминия, никеля и ряда других катионов. При этом железо и другие катионы задерживаются колонкой, а хром и марганец в виде анионов Сг 4 и МпО остаются в эффлюенте. [c.144]

    Иначе обстоит дело в подгруппе марганца. Здесь незаконченными являются уже два внешних слоя. Так как в наиболее удаленном от ядра слое находится только 2 электрона, тенденции к дальнейшему присоединению электронов не будет. Наоборот, при их отдаче в образовании валентных связен могут принять участие и 5 электронов следующего слоя. Поэтому максимальную положительную галентность элементов подгруппы марганца также можно ожидать равной семи. Таким образом, по своим основным тенденциям элементы обеих подгрупп сильно отличаются друг от друга тогда как галоиды должны в первую очередь характеризоваться резко выраженной металлоидностью, марганец и его аналоги будут вести себя как металлы. [c.238]

    Марганец — неблагородный металл, стандартный электродный потенциал его = —1,18 в. Он легко растворим в кислотах с выделением водорода и образованием солей двухвалентного марганца. Стандартный электродный потенциал рения равен +0,15 в. Рений не растворяется в растворах соляной и серной кислот, но окисляется концентрированной азотной кислотой до рениевой кислоты ННе04- Каждой валентной форме марганца отвечают следующие окислы  [c.316]


Смотреть страницы где упоминается термин Марганец валентность: [c.290]    [c.69]    [c.271]    [c.83]    [c.109]    [c.285]   
Аналитическая химия марганца (1974) -- [ c.12 , c.15 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.302 ]




ПОИСК





Смотрите так же термины и статьи:

Марганец валентные переходы

Марганец высшие валентности

Марганец высшие валентности иодат

Марганец высшие валентности комплексы

Марганец высшие валентности молибдат

Марганец высшие валентности фториды

Марганец низшие валентности

Марганец низшие валентности алкил

Марганец низшие валентности иодиды

Марганец низшие валентности карбонилы

Марганец низшие валентности нитрозил

Марганец, атомный и катионные радиусы валентные состояния



© 2025 chem21.info Реклама на сайте