Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Графит фториды

    Действие на графит смеси фтора с избытком фтористого водорода при обычных условиях ведет к увеличению расстояния между слоями до 5,4 А и образованию черного вещества предельного состава С Р, также содержащего ковалентные связи С—Р с (РР) = 4,9 А]. Сами углеродные паркеты при этом, по-видимому, не изменяются, но становятся расположенными точно друг над другом (структура АААА...). Этот фторид проводит электрический ток, однако, гораздо (примерно в 1000 раз) хуже графита. Он химически очень устойчив, но при нагревании начинает разлагаться уже выще 100 °С. Никаких переходных форм между ним и СР получить не удается. [c.503]


    В табл. 37 приведены значения краевых углов смачивания расплавленных фторидов и хлоридов на угле и графите при температурах, близких к температуре плавления. [c.251]

    Смачивающая способность хлоридов и фторидов щелочноземельных металлов крайне мала. Существенное влияние на смачиваемость оказывает природа твердой поверхности. Хуже всего расплавы галогенидов смачивают графит, лучше смачивается уголь и еще лучше металлические поверхности, а также магнезит, шамот и т. п. [c.251]

    Наиболее широко применяют на практике химическую очистку газо-образными галоидами, так как хлорирование и фторирование являются наиболее эффективными методами удаления большинства примесей из графита, поскольку сам графит не реагирует ни с хлором, ни с фтором, а образующиеся летучие соединения имеют более низкую температуру кипения, чем металлы и их карбиды. Кроме того, хлориды и фториды большинства элементов не диссоциируют при температуре графитации. Применение хлорирования, как отмечалось выше, способствуя графитации, улучшает степень совершенства кристаллической структуры графита. [c.177]

    Срок работы электролизера 4—5 лет. Современные промышленные ванны для получения рафинированного алюминия рассчитаны на силу тока 25—70 кА. Удельный расход электроэнергии постоянного тока 17370—19830 кВт ч/т. Расход материалов на получение 1 т рафинированного алюминия составляет (в кг) алюминий-сырец 1020—1030, графит 12—17, медь 10—16, хлорид бария 27—41, криолит 16—23, фторид алюминия 4—13. [c.477]

    Восстановление фторида бериллия натрием не получило распространения ввиду того, что натрий разрушает графит н обладает низкой температурой кипения (880°С). Хлорид бериллия также менее удобен для металлотермического восстановления, так как его температура кипения 488° С. [c.229]

    Графит 2500 Фториды, сульфиды, нит- Фторсодержащая [c.20]

    Иногда к Г. ф. относят соед. внедрения галогенфторидов. также фторидов металлов в графит (см. Графита слоистые соединения). [c.143]

    Примерами химически активных носителей являются хлорид серебра (в случае анализа закиси-окиси урана) и смесь фторидов алюминия и натрия. Их применение позволило в первом случае снизить пределы обнаружения ряда примесей до 10 % [1009], во втором — определить 10 г бора в особо чистом графите [988]. [c.150]

    Резиновые смеси. В качестве наполнителей смесей из Ф. к. применяют печную (напр., ПГМ-33) и термич. сажу, графит, тонкодисперсную 8102, асбест, мел, силикаты кальция, магния, бария, фторид кальция. Количество наполнителей обычно невелико (15—35 мае. ч. здесь и далее — в расчете на 100 мае. ч. каучука). Смеси из Ф. к. с углеродными сажами наиболее пригодны для переработки методом экструзии. Смеси с минеральными наполнителями характеризуются особенно высокой жесткостью, а их вулканизаты — наилучшей стойкостью к действию агрессивных сред. Минеральные наполнители замедляют, а сажи ускоряют вулканизацию. От количества наполнителя в резиновой смеси зависят модуль и износостойкость вулканизатов, а также их прочностные свойства при высоких темп-рах. [c.401]


    Муассан, впервые получивший свободный фтор в 1886 г., применил не нагревание, а электрический ток для разложения фторидов и притом при низких температурах (при снижении температуры фтор становится менее способным к реакциям с веществами, пригодными в качестве материалов для стенок сосуда и для электродов). Удобными оказываются платина, графит и даже медь, которая покрывается тонким слоем фтористой меди, предохраняющей при обычных температурах металл от дальнейшего взаимодействия со фтором. [c.44]

    В связи с поиском наиболее перспективных элементов, удовлетворяющих этим требованиям, активно проводятся исследования и разработка так называемых литиевых элементов, в которых используются органический электролит и литиевый отрицательный электрод. Основным направлением этих исследований является определение вещества положительного электрода, которое сочеталось бы с литиевым электродом наилучшим образом. В качестве объектов исследования выбирались различные соединения фтора, начиная с СиР и В результате было выяснено, что фториды металлов не дают положительного эффекта, в частности не позволяют решить проблему саморазряда. Однако было впервые обнаружено, что фторированный графит, представляющий собой слоистое соединение фтора и углерода, является превосходным веществом для изготовления положительного электрода. [c.132]

    Выше были описаны главным образом элементы на основе системы фторированный графит - литий как высокоэффективные элементы, в которых используются фториды, в области литиевых элементов, в разработке которых соперничают многие страны, элементы на основе нового активного в ещества, фторированного графита, имеют огромное значение - они играют ведущую роль в массовом производстве [c.154]

    С этой точки зрения исследуют соединения типа (С2р) , которые как и фторированный графит, могут показать высокое напряжение. Кроме того, ожидают, что в дальнейшем фториды, используемые в основном как активные вещества элементов, смогут обеспечить более высокую плотность энергии. Наряду с этим не исключена возможность появления материала с совершенно новыми физическими свойствами, а также использования известных соединений благодаря развитию сопутствующей технологии, например, электролитов. Ожидают, что и в дальнейшем прогресс будет связан с фторидами. [c.155]

    Существуют два основных типа слоистых соединений соединения, в которых графит, обладающий высокой электропроводностью, становится изолятором, и соединения, в которых высокая электропроводность не только сохраняется, но и увеличивается. Известны лишь два вещества первого типа — окись графита и фторид графита. [c.127]

    Применение атмосферы аргона и кислорода дает хорошие результаты также в сочетании с дугой переменного тока. Сравнивались результаты определения ряда элементов в графите при испарении в атмосфере воздуха и смеси 75% аргона с 25% кислорода. Использовали дугу переменного тока силой 8—16 А. Пределы обнаружения бора, бериллия, германия, кальция, магния, титана и цинка в графитовой основе и бериллия, кадмия, железа, германия, марганца, ниобия и титана в основе графит-Ь -Ькарбонат лития в 2—10 раз ниже в атмосфере аргона с кислородом, чем в воздухе. В основе графит + фторид лития (3 1) пределы обнаружения бора, бериллия, германия, кадмия, марганца, ниобия и цинка в 2—5 раз ниже в атмосфере аргона с кислородом, чем в воздухе. Зато предел обнаружения олова во всех матрицах при анализе в воздухе в 5 раз ниже, чем в смеси аргона с кислородом. Точность анализа в атмосфере аргона и кислорода несколько лучше, чем в воздухе. Но не для всех элементов оптимальное соотношение аргон кислород было 75 25. Так, максимальное значение /л//ф при определении магния и хрома в графите получено в атмосфере 40% аргон-ЬбО% кислорода, а при определении хрома и железа в основе графит + -[-карбокат лития — в атмосфере чистого аргона. Таким образом, состав 75% аргона-f 25% кислорода является компромиссным. Авторами исследованы также смеси гелия с кислородом (70—100% Не+ЗО—0% Ог). При этом столкнулись со следую-шими трудностями. Большое различие в плотности гелия и кислорода затрудняет смешение их в контролируемых условиях. Кроме того, при содержании, в смеси 30% кислорода электроды горели очень интенсивно, как будто кислорода было гораздо больше. Поэтому от гелия отказались, хотя характеристики у гелия и аргона близкие [236]. [c.128]

    При электролизе растворов оксокислот или их солей с инертным анодом (обычно Р1, графит, уголь) на последнем выделяется кислород, что связано с высокими электродными потенциалами оксоанионов. Аналогично ведут себя фторид-ионы (фор- Р2=2,87 В). Иоиы С , Вг , 1 , 5- разряжаются на аноде при электролизе не очень сильно разбавленных растворов. Вместо оксоаннопов и фторид-ионов анодному окислению подвергается вода, в результате чего выделяется кислород и накапливаются ионы водорода, образующие в приаподном пространстве, где собираются также и оксоанионы, соответствующие кислоты. [c.267]

    Для тушения его используют фторид кальция, для тушения непригодны азот, диоксид углерода и хладоны. Плутоний еще более чувствителен к возгоранию, чем уран. Уран, торий и плутонии весьма пирофорны в порошкообразном состоянии и легко возгораются от разрядов статического электричества. Компактный плутоний самовоспламеняется при 600 °С. Цирконий и магний значительно более активны и практически не горят только в атмосфере благородных газов, например аргона. Графит возгорается с большим трудом и только в накопленном состоянии, горит он гетерогенно, при высоких температурах реагирует с водяным паром. При температурах до 200—250 °С в графите под воздействием проникающей радиации искахоет-ся структура кристаллической решетки, и вследствие этого накапливается скрытая энергия (эффект Вигнера). Если эта энергия регулярно не рассеивается путем отжига (повышения температуры), то она может накапливаться до определенной точки и затем внезапно выделяться с резким повышением температуры, которая может привести к пожару. Горение графита ликвидируют обычно диоксидом углерода или аргоном. Можно применить и большие массы воды. Высокая пожарная опасность создается при применении в качестве теплоносителя натрия или калия. Хотя они горят медленно, но тушение их затруднено и требует специальных средств пожаротушения. [c.93]


    Ужесточение режимов эксплуатации (повышение т-ры, нагрузки, скорости перемещения, ресурса работы и т.д.) совр. транспортных ср-в и пром. оборудования требует улучшения качества смазочных материалов и прежде всего их С.Д. Для его улучшения в состав смазочного материала вводят (часто одновременно) загустители, наполнители и прпсадки (см. Присадки к смазочным материалам). Загустители-мьша, твердые углеводороды (петролатум, церезин), неорг. (бентонит, силикагель) и орг. (пигменты, кристаллич. полимеры, производные мочевины) соединения, ПАВ. Наполнителями служат обычно твердые кристаллич. добавки (графит и его фториды, МоЗ , нек-рые оксиды и- иодиды металлов и др.). С. д. твердых смазочных покрытий (см. Твердые смазки) обусловлено слабыми связями между слоями кристаллич. решетки и сильными-в плоскости слоя. При нанесении пленок мягких металлов С. д. определяется их высокой адгезией к твердой подложке при относит, легкости деформирования. [c.367]

    Недеструктивный активационный метод применяется для определения ЗЬ в алюминии [841, 1688] и его сплавах [945], нитриде алюминия [421], аскорбиновой кислоте [1630], асфальте [982], висмуте [830, 1204, 1239] и его сплавах с сурьмой [48, 313], воздушной пыли [884, 13131, галените [21], германии [633, 1384, 1385], горных породах [230, 427, 541, 949, 1061, 1289], графите [106, 1207], железе, чугуне и стали [135, 884, 1128, 1129, 1556, 1652], индии [12711, карбиде кремния [468], кремнии [212, 762, 932, 950, 989, 1217, 1361], тетрахлориде кремния [1462] и эпитаксиальных слоях кремния [580], меди [1002], морских [642, 1427] и природных водах [4, 1040], нефти и нефтепродуктах [991, 1517], олове [1305], поли-фенолах [983], почвах [1528], растительных материалах [1316, 1528], рудах [466, 1270], свинце [835 -837, 1205, 1505, 1506], стандартных образцах металлов [1316], теллуре [5], титане [68], хроматографической бумаге [1409], циркалое [1099], эммитерных сплавах [625], трифенилах [8771 и фториде лития [331]. Благодаря высокой чувствительности и вследствие того, что для анализа, как правило, требуется небольшое количество анализируемого материала, эти методы часто используются в криминалистической практике [884, 892, 12961. Имеются указания [965] аб использова- [c.74]

    Выход в расчете на графит близок к количественному, однако при про-.должптельном фторировании происходит незначительное выгорание из-за образования летучих фторидов углерода. Содержание фтора, рассчитанное по увеличению массы препарата, обычно на 1% занижено по сравнению с фактическим содержанием. [c.677]

    Аморфный У. и графит реагируют с фтором с образованием, в основном, фторида У.(1У). Алмаз с фтором не реагирует. Реакция с серой протекает в случае алмаза при 900—1000°С, графита и аморфного У.— при 700—800 °С. Продуктом реакции является сероуглерод S2. Водород не взаимодействует с алмазом. Графит и аморфный У. реагируют с Нг очень медленно. В зависимости от температуры и давления они образуют различные углеводороды метан, ацетилен, бензол и др. У. сгорает на воздухе с образованием СО и СО2. У. устойчив к действию концентрированных кислот и щелочей. Хромовая смесь окисляет У. до СО при 180—230 °С в случае алмаза и при более низких температурах — в случае графита и аморфного У. Смесь концентрированной HNO3 и хлората калия (КСЮз) при нагревании окисляет графит до меллитовой (бензолгексакарбо-новой) кислоты. См. также приложение. [c.291]

    Левина [314] опубликовала обзор работ по использованию масс-спектрометра для изучения термодинамики испарения и показала, что этот метод может быть применен для изучения состава паров в равновесных условиях и определения парциальных давлений компонентов, а также термодинамических констант. При повышенных температурах изучались галогенные производные цезия [9], были получены теплоты димеризации 5 хлоридов щелочных металлов [355] исследовались системы бор — сера [458], хлор- и фторпроизводных соединений i и z на графите [53], Н2О и НС1 с NazO и LizO [442], UF4 [10], системы селенидов свинца и теллуридов свинца [398], цианистый натрий [399], селенид висмута, теллурид висмута, теллурид сурьмы [400], окиси молибдена, вольфрама и урана [132], сульфид кальция и сера [105], сера [526], двуокись молибдена [76], цинк и кадмий [334], окись никеля [217], окись лития с парами воды [41], моносульфид урана [85, 86], неодим, празеодим, гадолиний, тербий, диспрозий, гольмий, эрбий и лютеций [511], хлорид бериллия [428], фториды щелочных металлов и гидроокиси из индивидуальных и сложных конденсированных фаз [441], борная кислота с парами воды (352), окись алюминия [152], хлорид двувалентного железа, фторид бериллия и эквимолекулярные смеси фторидов лития и бериллия и хлоридов лития и двува лентного железа [40], осмий и кислород 216], соединения индийфосфор, индий — сурьма, галлий — мышьяк, индий — фосфор — мышьяк, цинк — олово — мышьяк [221]. [c.666]

    К числу сравнительно немногих силикатов, разлагаемых этим способом не полностью, можно отнести андалузит, топаз и некоторые разновидности турмалина. Шпинель, графит и пирит, которые находятся в некоторых горных породах, также трудно разлагаются, но они не являются силикатами и не содержат щелочных металлов, поэтому их присутствием можно пренебречь, если они будут обнаружены. Для анализа первых трех упомянутых выше минералов Яннаш рекомендует сильно прокалить порошок минерала в платиновом тигле, разложить его сплавлением с фторидом аммония, удалить избыток последнего прокаливанием и превратить фториды в сульфаты нагреванием с серной кислотой [c.1011]

    С помощью не диссоциирующего в электроде фторида натрия. определяли примеси в графите методом фракционной дистилляции [НИ], с добавкой карбоната бария —малые содержания алюминия в закиси-сжися урана [129]. [c.149]

    Попытки классифицировать клатратные соединения графита по типу связей, например ковалентных или ионных, оказались не вполне успешными [45, 75]. В связи с многочисленными трудностями, возникающими при попытках охарактеризовать тип связи, возможна лишь грубая классификация на нерегенерируемые и регенерируемые связи. Эта классификация до известной степени сходна с классификацией Нс1 ковалентные и ионные связи [45], но основывается на характерных особенностях реакции. К нерегенерируемым соединениям относятся клатраты с различными окислами и фторидами графита регенерировать графит из этих клатратов невозможно, так как получаются только продукты разложения. Окислы и фториды нельзя считать клатратами, потому что они ведут себя как клатратообразующие вещества. Регенерируемые соединения, например клатраты графита с калием, бромом, хлорным железом и другими веществами, дальнейшей обработкой можно разложить с выделением свободного графита. Эти регенерируемые соединения следует рассматривать как истинные клатраты. [c.123]

    Для того чтобы представить себе принцип, лежащий в основе образования фторидов межслойного внедрения в структуру графита атомов F, мы должны вспомнить электронное строение кристаллов (см. том I, стр. 33). Каждый атом углерода в графите, как мы знаем, затрачивает по три своих электрона на образование парноэлектронных связей с тремя соседними атомами, четвертый электрон остается одиночным и полусвободным, осуществляя металлическую электропроводность. При вхождении атомов F в межслойные щелевидные пространства графита одиночные электроны F дают пары с одиночными электронами атомов С, и получаются парноэлектронные связи С—F. По мере вхождения атомов F электропроводность графита постепенно падает, и белые кристаллы состава, близкого к стехиометрическому с формулой [ F], оказываются изоляторами. [c.372]

    Осуществление конверсии фтора и фторидов хлора в тетрафторид кремния и хлор возможно в определенных контролируемых условиях. Поэтому хроматорафический метод определения 51р4 и С12 является основой метода определения высокоагрессивных газов (Рг и фторидов хлора) с помощью серийно выпускаемых хромато графов. В простейшем варианте конверсионный метод позволяет легко осуществлять анализ элементного фтора на содержание основного компонента, что бывает крайне необходимо для контроля работы промышленных фторных электролизеров [218]. [c.351]

    Для удаления влаги, являющейся основной причиной ухудшения эффективности электрохимической системы, достаточно простого высушивания. Благодаря этим свойствам фторированный, графит удобен и с точки зрения изготовления Электрода. Кроме того, в химическом отношении он оченв устойчив, почти не вступает в реакции с применяемыми в настоящее время органическими электролитами и не растворяется в них. Будучи таким стабильным веществом, фторированный графит обеспечивает высокую сохранность элемента. Вместе с тем благодаря электрохимической активности восстановление, т.е. разряд, проходит достаточно эффективно, что существенно отличает его от фторидов меди, никеля и т.п. [c.143]

    На рис. 2.37 показано изменение характера дифракцвд рентгеновских лучей в процессе разряда фторированного графита. В ходе разряда пики 20 = 12,2° и 20 = 41° исчезают, расстояние между слоями уменьшается и в результате появляется аморфный графит (2б = 20,5°). Одновременно ионы лития Li ", выходящие из литиевого электрода, и ионы фтора Р образуют кристаллический фторид лития Ь1р(20 = 38,6°и 20 = 45°). Поскольку образующийся графит обладает проводимостью, разрядное напряжение выравнивается и коэффициент использования фторированного графита улучшается. [c.144]


Смотреть страницы где упоминается термин Графит фториды: [c.354]    [c.479]    [c.365]    [c.147]    [c.532]    [c.349]    [c.21]    [c.22]    [c.21]    [c.22]    [c.532]    [c.472]    [c.94]    [c.189]    [c.74]    [c.225]   
Химический энциклопедический словарь (1983) -- [ c.143 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.143 ]




ПОИСК





Смотрите так же термины и статьи:

Графит

Графит графита

Графой

Графы



© 2025 chem21.info Реклама на сайте