Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды Метан

    Из числа относящихся сюда углеводородов — метан,а, этана, пропана, н-бутана и изобутана — метан в описанных здесь условиях практически не реагирует. Это, несомненно, объясняется отчасти малой растворимостью метана в четыреххлористом углероде, отчасти же тем, что метан является из них наиболее инертным по отнощению к реакциям замещения, ка к это видно также лри нитровании и хлорировании. Не дали положительных результатов также попытки повысить растворимость метана в четыреххлористом углероде снижением температуры до —5° с тем, чтобы таким путем обеспечить увеличение выходов при сульфохлорировании. [c.394]


    При контактировании с сырьем воздействие катализатора на углеводороды довольно быстро уменьшается вследствие отложения, кокса в его порах. Для восстановления активности, временно потерянной из-за отложения кокса в порах, катализатор должен быть освобожден от кокса. Сжигая кокс и превращая его в газообразные легко отделяемые от катализатора продукты сгорания, восстанавливают активность катализатора. Процесс восстановления активности катализатора носит название регенерации Образующиеся при этом газы называют газами регенерации. Они представляют собой в основном смесь нескольких газов — азота, кислорода (не вступившего в соединения), углекислого газа, окиси углерода и водяного пара. В противоположность газам регенерации газы крекинга состоят преимущественно из легких парафиновых и олефиновых углеводородов (метан, этан, этилен, пропан, пропилен и др.). [c.15]

    Так, простейшее органическое соединение углеводород метан имеет состав СН4. Строение его мон<но изобразить структурной (а) или электронно-структурной (или электронной) (б) фор мулами  [c.453]

    Следовательно, углеводороды метан, этан, пропан, бут. ы т. д —гомологи одного и того же ряда, который называют р дом предельных, или насыщенных углеводороде или, по первому представителю, — рядом метана. [c.456]

    В табл. VI.4 перечисляются основные вещества, загрязняющие воздух, и их количество, ежегодно выбрасываемое природными и искусственными источниками. Эти вещества являются первичными загрязнителями воздуха они испускаются в атмосферу в той форме, как они приведены в таблице. Например, простейший углеводород - метан СН - побочный продукт переработки природного топлива и главный компонент природного газа. Он также производится анаэробными бактериями и термитами при расщеплении ими органических веществ. [c.410]

    Из насыщенных углеводородов метан наиболее устойчив по отношению к реакциям нитрования. При его нитровании максимальный выход нитросоединений не превышает 15%. [c.127]

    При переработке газов с небольшим содержанием легких углеводородов (метан, этан, этилен) целесообразно процесс абсорбции — десорбции проводить в одном аппарате — фракционирующем абсорбере, в этом случае верхняя часть аппарата является абсорбером, нижняя — отпарной колонной. [c.271]

    Было установлено, что состав и содержание углеводородов в воздухе — величины переменные, зависящие от многих факторов, и прежде всего от источников загрязнения и метеорологических условий. В воздухе всех трех предприятий всегда обнаруживали легкие углеводороды метан, этан, этилен и почти всегда — ацетилен. Состав тяжелых углеводородов оказался специфичным для данного места и данных условий. Полученные результаты представлены в табл. 1. [c.32]


    Другие исследователи установили, что при разложении смазочного масла образуются как жидкие, так и газообразные углеводороды, проникающие затем в аппарат [15]. Они помещали образцы цилиндрового масла типа брайтсток в автоклав, где выдерживали при температуре 200—350° С и давлении 18,0—20,0 Мн м (180— 200 кГ/см ) при прохождении через масло воздуха. Выходящий из автоклава воздух содержал следующие углеводороды метан, этилен, пропилен, пропан и следы ацетилена. [c.35]

    Парафиновые углеводороды Метан СН4 [c.402]

    Углеводороды (метан, этан и природный газ), как и СО, осаждают углерод в присутствии каталитически активных примесей футеровки в широком диапазоне температур. [c.95]

    Кислые компоненты и легкие углеводороды (метан и этан) частично растворяются в водном растворе МЭА. [c.8]

    Бурное развитие органической технологии — производство пластических масс, химических волокон, синтетических каучуков, лаков, красителей, растворителей и т. п. — требует огромных количеств углеводородного сырья, которое получается в результате химической переработки различных топлив. До недавнего времени основным источником сырья для органического синтеза был уголь, из которого при коксовании получают бензол, толуол, ксилолы, фенол, нафталин, антрацен, водород, метай, этилен и другие продукты. В нефти, находящейся в недрах земли, всегда присутствуют растворенные газы, которые при добыче выделяются из нее. Эти так называемые попутные газы содержат метан, этан, пропан, бутан и другие углеводороды. На 1 т нефти в среднем приходится 30—50 м попутных газов, которые являются ценным сырьем для химической промыщленности. Источником углеводородного сырья служат также газы, получаемые при переработке нефти крекинге, пиролизе, риформинге. В этих газах содержатся предельные углеводороды метан, этан, пропан, бутаны и непредельные углеводороды этилен, пропилен и др. Наряду с газообразными углеводородами при переработке нефти могут быть получены ароматические углеводороды бензол, толуол, ксилолы и их смеси. [c.29]

    Исходные вещества — простые углеводороды метан, этилен, пропилен, бутилен, ацетилен, бензол, толуол и др., являющиеся основным сырьем органического синтеза, получаются при химической переработке газообразных, жидких и твердых видов топлива. В настоящее время многие из перечисленных исходных веществ выпускаются десятками и сотнями тысяч тонн. [c.160]

    Основной реакции сопутствуют многочисленные побочные и вторичные реакции, в частности крайне нежелательные реакции образования углеводородов, соответствующих по числу углеродных атомов высшим жирным спиртам, а также бутиловому и метиловому спиртам. Высокомолекулярные углеводороды загрязняют получаемые спирты, а газообразные углеводороды (метан, бутан) переходят в качестве примесей в циркулирующий водород. Степень превращения сырья достигает 95—99%. Для нормального протекания процесса и поддержания катализатора во взвешенном состоянии требуется 10—15-кратный избыток водорода. Реакционная смесь, состоящая из жирных спиртов, непрореагировавших эфиров, [c.32]

    Сравнение реакционной способности углеводородов разных классов показывает, как сильно она зависит от температуры. Так, при нормальной температуре химически наиболее стойкими из всех классов углеводородов являются предельные углеводороды, а при температуре 500—800° С — ароматические углеводороды предельные же углеводороды становятся весьма нестойкими и легко подвергаются химическим превращениям. Толуол оказывается боле термически стойким, чем к-гептан [26]. В присутствии катализаторов реакционная способность предельных углеводородов проявляется при значительно более низких температурах. Реакционная способность парафиновых углеводородов при высоких температурах возрастает с увеличением молекулярного веса углеводородов. Низший член парафиновых углеводородов — метан — начинает в заметной степени подвергаться термическому разложению лишь при температурах выше 900° С [27 ], к-гексан разлагается уже при 520 С [28], а твердые парафины ( ao—С б) крекируются при 400 С. [c.55]

    Молекула нормального углеводорода имеет форму цепочки, как это представлено на рис. 124. Поперечные и продольные размеры молекул нормального углеводорода могут резко различаться. Наиболее легкие углеводороды — метАн и этан — отличаются по строению молекул от более тяжелых углеводородов. Молекула метана имеет форму тетраэдра с критическим диаметром 4А. В молекуле [c.315]

    Метан обладает исключительной термической устойчивостью скорость крекинга его при 600° О в 250 ООО раз меньше скорости крекинга этана. Поэтому при крекинге смеси газообразных углеводородов метан играет роль инертного разбавителя, практически не подвергающегося термическому превращению в обычных условиях крекинга. [c.91]


    В циклических углеводородах метан растворяется меньше, чем в парафиновых. [c.79]

    В ароматических углеводородах метан растворяется меньше, чем в нафтеновых, и в нафтеновых меньше, чем в парафиновых. [c.79]

    Алкилированию можно подвергать углеводороды как низкой, так и высокой молекулярной массы. Но для получения компонентов бензина практическое значение имеет только реакция углеводородов Сг—Сб. Из парафиновых углеводородов метан и этан в [c.293]

    Заводы гидрогенизации производят значительные количества газов, содержащих в основном парафиновые углеводороды - метан, этан, пропан, бутаны, а также пентаны. Кроме того, в газах содержатся оксиды углерода, сероводород и аммиак. Некоторое количество этих примесей (оксиды углерода, азот) поступает в систему с техническим водородом. [c.155]

    Из всех насыщенных углеводородов метан хлорируется с наибольшим трудом, однако при достаточно высокой температуре реакция протекает нормально [4]. Если все количество хлора вводить в поток углеводорода не сразу, а отдельными порциями в различных точках вдоль оси реактора, с тем чтобы всегда поддерживался избыток метана или продуктов его частичного хлорирования, можно получить смеси, содержащие от 90% хлористого метила и выше и до 100% четыреххлористого углерода. Оптимальная температура хлорирования равна 400—440°. На рис. 7 приведены результаты опытов по хлорированию метана [3]. [c.79]

    Углеводород метан занимает особое положение все четыре его валентности насыщены водородом. [c.28]

    Различают сырой и стабильный газоконденсат. Сырой кон.тенсат содержит раствореииые газовые углеводороды — метан, этап, пропан, бутан, иногда и неуглеводородные газы — СО2, НзЗ, N9. Растворимость газовых углеводородов в жидких растет со снижением температуры и повышением давления, т, е, состав сырых конденсатов зависит от условий их выделения из природного газа. Сырой конденсат получается при промысловой сепарации продукции скважин, [c.207]

    Легкие парафиновые углеводороды (метан, этан, пропан, бутан) при обычной температуре и атмосферном давлении — газы более тяжелые углеводороды — пентан, гексан, гептан и другие — жидкости и начиная с углеводорода цетана (С еНз4) — твердые вещества. [c.11]

    По мере увеличения температуры кипения углеводородов термостойкость нх снижается. В каждом ряду легкие низкокипяш ие углеводороды расщепляются труднее, чем высококипящие. Так, например, из парафиновых углеводородов метан является наиболее термостойким. Помимо расщепления углеводороды подвергаются и другим изменениям пли, как принято говорить, превращениям. Молекулы некоторых тлеводородов не расщепляются, а только теряют часть своих водородных атомов. Процесс отщепления водородных атомов от молекул углеводородов называется дегидрогенизацией, а обратный процесс присоединения водорода гидрогенизацией. Часть водорода, получаемого в результате первого процесса, присоединяется к ненасыщенным углеводородам. [c.14]

    Развитие процессов нефтехимического синтеза связано с широким использованием природных промышленных газов. Предельные углеводороды — метан, этан, нронан, бутан, изобутан, пентан применяют в качестве топлива, а также сырья для получения непредельных углеводородов (путем крекинга и пиролиза). Непредельные углеводороды в свою очередь являются сырьем для получения синтетических материалов. В промышленных масштабах перерабатываются газы этилен, пропилен, бутилены, дивинил, изонрен, ацетилен. [c.233]

    Сырые нефти представляют собой жидкости, цвет которых варьирует от янтарно-желтого до коричневато-зеленого и иногда даже черного удельный вес их приблизительно от 0,800 до 0,985 кипят они в пределах от комнатной температуры до температуры выше 350°. Нефти из глубоких горизонтов с большим количеством углеводородных газов, так называемые дистиллятные или конденсатные нефти, могут иметь значительно меньший удельный вес, порядка 0,760, и быть практически бесцветными. Они могут не содержать фракций, кипящих выше 250 или 300°. Если перегонять нефть, то при температуре около 350° начинается частичное термическое разложение. Молекулярный вес обычных сырых нефтей может быть более 1000, что соответствует температуре кипения выше 500°. В среднем нефти могут содержать от 9 до 30 или 40 % бензиновых фракций, выкипающих до 200°. Остальные фракции распределяются по довольно плавной кривой выкипания, показывающей соотношения, в которых присутствуют керосиновые и газойлевые фракции, легкие и тяжелые масляные фракции и так называемые остаточные продукты. Термин масляные фракции указывает лишь молекулярный вес фракции, так как применимость ее для смазочных целей зависит от небольших различий в составе. После извлечения из пласта нефти обычно насыщены (при давлении и температуре, соответствующим условиям хранения) легкими углеводородами (метаном, этаном и др.) и часто содержат сероводород и эмульгированную пластовую воду. Ввиду того, что нефти добываются из нормально восстанови гельной среды, на воздухе они обычно окисляются. С этой точки зрения фракции, выделяемые обычной перегонкой, являются менее стабильными, чем сами сырые нефти. [c.50]

    Предельные (насыщенные) углеводороды. Простейший редставитель класса предельных углеводородов — метан СН4. то бесцветный легкий горючий газ, не имеющий запаха и почти ерастворимый в воде. Температура его кипения равна —161,5 С, емпература затвердевания —182,5 °С. [c.467]

    Атом углерода (аюмный номер 6) содержит шесть электронов, два - во внутренней оболочке и четыре - во внешней. Для заполнения внешнего электронного уровня требуется четыре дополнительных электрона. Это достигается путем образования ковалентной связи. Рассмотрим самый простой углеводород метан В его молекуле каждый атом водорода отдает в совместное с атомом углерода пользование свой единственный электрон. Это можно представить следующим образом  [c.187]

    Химическая инертность метана ставит его на особенное место среди углеводородов ряда метана. Его устойчивость при высоких температурах имеет весьма важное значение. В качестве непременного продукта, гидрогенизации углеводородов метан всегда присутствует в гавах, об(разова]ва шихся гари разложении, выдешйясь или не-посредсгвенно при разложении или в качестве продукта вторичной реакции гидрирования непредельных газообразных углеводородов при высокой температуре.  [c.235]

    По этому вопросу наиболее важной можно считать работу Вона и Коварда. Они заставляли циркулировать газ в течение 2 часов 30 минут в трубке, нагретой до 570—580°, и получали ацетилен, этан, метан, водород, ароматические углеводороды. Метан образуется в больших количествах. Водород выделяется в начале опыта, в дальнейшем количество водорода уменьшается. Количество угля ностененно к концу опыта уменьшается. [c.245]

    СОг к СО находится в пределах 0,5—0,8. Для цеолитсодержащих катализаторов характерны более низкие значения. В газах регенерации наряду с окисью и двуокисью углерода обнаружены также двуокись и трехокись серы. Содержание трехокиси серы составляет от 10 до 40% от суммы окислов серы [159]. Кроме того, в газах регенерации обнаружены сероводород, меркаптаны, серо-окись углерода и сероуглерод, а также углеводороды (метан и зтан). Концентрации их меняются так, содержание сероокиси углерода колебалось от 9 до 190 млн. . Из общего содержания сернистых соединений не менее 70% составляют двух- и трехокись серы [158]. [c.122]

    Названия первых четырех насыщенных ациклических углеводородов — метан, этан, пропан, бутан. Названия последующих членов этого ряда состоят из основы — числителыюго и окончания -ан. Примеры названий даны в приве- [c.305]

    Например, при ректификации нефтепродуктов такую роль могут выполнять азот, углекислый газ, низкомолекулярные углеводороды (метан, этан и др.). В промышленной практике для этой цели чаще всего применяют водяной пар, так как он более доступен и сравнительно легко отделяется от парообразных продуктов ре -тнфикации углеводородного сырья после их конденсации. [c.160]

    В четвертой главе рассмотрена проблема стерических факторов обычных (молекулярных) и радикальных реакций как часть проблемы реакционной способности частиц. На основе метода переходного состояния получены формулы для вычисления стерических факторов мономолекулярных и бимолекулярных реакций и зависимости их от температуры. Разработан приближенный метод расчета стерических факторов реакций присоединения и замещения радикалов с непредельными и предельными углеводородами, а также реакций диспропорционированияи рекомбинации радикалов. Этот метод расчета стерических факторов радикальных реакций основан на квантово-механических соображениях и апрокси-мации сумм состояний радикалов при помощи сумм состояний молекул, близких по своему химическому строению к радикалам. Приближенный способ расчета применен к вычислению стерических факторов обратимых реакций присоединения радикалов —Н, СНз к непредельным углеводородам (этилен, пропилен, изобутилен, аллен, ацетилен и др.), обратимых реакций замещения этих радикалов с непредельными и предельными углеводородами (метан, этан, пропан, бута- [c.10]

    С накоплением экспериментальных данных стала очевидной несостоятельность ацетиленовой теории как универсальной концепции крекинг-проце.сса. Непоправимый удар этой теории был нанесен в результате исследования крекинга гексана, в продуктах которого не было найдено ацетилена 15]. Ацетиленовая схема является частной, применимой для объяснения распада только некоторых предельных углеводородов (метан и др.) в условиях более высоких температур (пиролиз). Вместе с тем ацетилен, по-видимому, не является первичным продуктом распада, например, в случае распада этана он образуется из этилена. Следовательно, ацетиленовая теория, по существу, не объясняла образования первичных продуктов крекинга (кроме сл уч 3я пиролиза СН4). Сформулированная на незначительном экспериментальном материале, она, естественно, не смогла объяснить наблюдаемого разнообразия продуктов крекинга и уступила место другим теориям, а так называемый ацетиленовый механизм сохранил значение для понимания путей образования ароматики и конденсированных систем в условиях пиролиза углеводородов. [c.17]


Смотреть страницы где упоминается термин Углеводороды Метан: [c.10]    [c.114]    [c.11]    [c.34]    [c.91]    [c.168]    [c.119]    [c.137]    [c.140]    [c.912]    [c.52]    [c.109]    [c.307]   
Смотреть главы в:

Синтезы органических соединений с изотопами водорода -> Углеводороды Метан




ПОИСК







© 2025 chem21.info Реклама на сайте