Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Меди фторид

    Пример 2. Фторид кальция не диссоциирует иа атомы даже при 1000°С, а подид меди(П) неустойчив уже при обычной температуре. Чем объяснить различную прочность этих соединении  [c.69]

    Иодометрическое определение меди имеет большое практическое значение. Оно используется при анализе бронз, латуней, медных руд и т. д. Мешающего влияния Fe (III) избегают введением в раствор фторид- или пирофосфат-ионов, образующих с Fe прочные комплексы, которые уже не окисляются иодидом. При соблюдении всех условий иодометрический метод определения меди по точности не уступает электрогравиметрическому, но намного превосходит его по экспрессности. [c.283]


    Фторид кальция Хлорид меди (I) Бромид серебра Иодид натрия Триоксид серы Сульфид железа(Н) Нитрид магния Карбид кальция [c.138]

    С фтором практически не реагируют или реагируют весьма незначительно инертные газы, фториды тяжелых металлов, фторопласты, а также висмут, цинк, олово, свинец, золото и платина. Медь, хром, марганец, никель, алюминий, нержавеющая сталь при отсутствии воды практически стойки в контакте с фтором вследствие образования на их поверхности прочной защитной пленки соответствующего фторида. [c.128]

    В качестве сырья при получении глицерина и гликолей гидрогенолизом углеводов используются главным образом водные растворы (древесные гидролизаты, меласса) в этом случае вопрос о растворителе предопределен и остальные факторы должны подбираться с учетом этого. Когда же сырьем служит сахароза, то в качестве растворителя можно использовать не только воду, но и смесь метанол — вода [16], и другие спиртовые среды. Известно, что медные катализаторы на носителях плохо работают при гидрогенолизе водных растворов углеводов [36], если же использовать в качестве растворителей спирты, то можно применять для гидро-генолиза медно-хромовый катализатор и хромат бария, гидроокись и фторид меди, алюминат меди и другие катализаторы, которые дешевле никелевых [37]. Однако в этом случае возникает необходимость в рекуперации и очистке растворителя, что не требуется для воды. [c.115]

    Из методов прямого титрования необходимо отметить прежде всего методы определения катионов различных металлов рабочим раствором этилендиаминтетрауксусной кислоты или другими комплексонами (см. 121). Кроме того, практическое значение имеет определение некоторых металлов (медь, никель и др.) с помош,ью рабочего раствора цианистого калия. В качестве индикатора применяют, например, коллоидный раствор йодистого серебра при избытке цианистого калия йодистое серебро переходит в раствор вследствие связывания ионов серебра в цианистый комплекс K[Ag( N)2]. Часто определяют содержание анионов хлора путем титрования солями двухвалентной ртути. Несколько особое место занимают методы, основанные на образовании или разложении простых и комплексных фторидов. [c.418]

    Известны соединения меди в степенях окисления +1, +2 и +3. Последние, однако, малочисленны и ограничиваются простми и сложными оксидами и фторидами. Гораздо более распространены соединения меди (I) и меди (II). Соединения одновалентной меди менее устойчивы и похожи на аналогичные соединения серебра и золота (I). Соли двухвалентной меди по свойствам гораздо ближе к солям других двухзарядпых катионов переходных металлов. Эти особенности меди неразрывно связаны с ее электронным строением. Основное состояние атома меди 3< 4з обусловлено устойчивостью заполненной а -оболочки (ср. с атомом хрома), однако первое возбу кденное состояние 3d 4s превышает основное по энергии всего на 1,4 эВ (около 125 кДж/моль). Поэтому в химических соединениях проявляются в одинаковой мере оба состояния, дающие начало двум рядам соединений меди (I) и (II). [c.159]


    Фтор. Фторирование с помощью элементарного фтора проводят в широком интервале температур в жидкой или газовой фазе, часто в присутствии меди, фторидов металлов или других соединений В результате взаимодействия нитрилов с фтором получают перфторуглеводороды, фторированные аМины и альдимины, соединения с азогруппой и др. [c.360]

    Галогениды одновалентной меди. Фторид меди(1) неизвестен. Хлорид и бромид получают кипячением кислых растворов солей меди(П)с медными стружками, взятыми в избытке к образующимся при этом растворам СиХ затем добавляют воду, и в осадок выпадает белый хлорид либо светло-желтый бромид одновалентной меди. При добавлении к соли двухвалентной меди ионов 1 образуется осадок, который быстро разлагается в результате количественной окислительно-восстановительной реакции с образованием иодида меди(1) и иода. [c.314]

    ФТОРИД МЕДИ ФТОРИД НАТРИЯ [c.179]

    Существует таюсе классификация ситаллов по типу применяемых катализаторов. По этой классификации различают способы получения ситаллов с применением благородных металлов (Ди, Ад, ), меди, фторидов, Т1О2, , Р2О5, пО, перехол-- [c.3]

    Комплексонометрический анализ различных сплавов, руд и концентратов. При комплексонометрическом анализе сложных объектов используют обычные приемы химического разделения (осаждение, ионный обмен, экстракция и т. д.) и маскировки (цианидом, фторидом, триэтаноламином, оксикислотами и другими реагентами), но почти все компоненты определяют комплексо-нометрическим титрованием. Например, при анализе сплавов цветных металлов, содержащих медь, свинец, цинк и алюминий (бронзы, латуни и т. д.), медь определяют иодометрически, а свинец и цинк — комплексонометрически после оттитровывания меди. Перед определением свинца цинк маскируют цианидом, алюминий — фторидом и титрование производят в присутствии соли магния. Затем демаскируют цинк, связанный в цианидный комплекс, раствором формалина и титруют ЭДТА. [c.244]

    Трифторид кобальта. Реакции углеводородов с трифторидом кобальта лучше всего осуществлять путем проведения паров углеводорода над нагретым стационарным слоем фторирующего агента [1]. Удобный лабораторный аппарат представляет собой обогреваемое током плоское металлическое корыто из меди, никеля, монеля или стали. Корыто неплотно, в большинстве случаев приблизительно до половины заполняется фторидом металла. Видоизменением этого прибора для проведения реакции в больших масштабах является прибор, состоящий пз цилиндричеС1С0Г0 сосуда с вращающейся мешалкой для поддержания фторирующего агента в высокодисперсном состоянии [6]. Выходящие из реактора продукты могут собираться р холодных ловушках или переходить в дополнительные реакторы для дальнейшего фторирования. [c.72]

    Проба очень чувствительна, но не позволяет определить природу галогена. Нельзя также с ее помощью открыть фтор, так как фториды меди нелетучи. Пробу Бейльштейна дают некоторые вещества, не содержащие галогена (мочевина, некоторые производные пиридина и др.). [c.235]

    Обычно энергия решетки тем больше, чем выше поляризуемость анионов (исключение фториды). Плохая растворимость соли определяется, конечно, не только поляризуемостью аниона. Так, например, хлориды, бромиды и иодиды одновалентных меди, серебра, золота плохорастворимы. Электронные конфигурации ионов Си+, Ag+ и Аи+ сходны —у всех полностью занят -уровень  [c.498]

    В раствор сульфата меди поместите алюминий и добавьте немного раствора хлорида натрия. Что произошло В другие порции раствора сульфата меди добавьте в каждый отдельно растворы фторида, бромида и йодида натрия, испытайте действие этих растворов на алюминий и сравните с влиянием хлорида натрия. [c.384]

    Фториды железа находятся обычно в полнмерпом, а трихлорид и трибромид — в димерном состоянии. Трихлорид и трибромид железа отличаются легкоплавкостью и значительной летучестью. С водой галиды образуют аквасоединения, которые по окраске отличаются от безводных галидов. Все галиды хорощо растворимы в воде и подвергаются в растворе гидролизу. Дигалиды обладают восстановительными свойствами. Окислительные свойства трихлорида и трибромида выражаются з том, что они способны в растворенном состоянии окислять даже малоактивные металлы, например медь. [c.304]

    Аппараты и коммуникации для работы со фтором обычно изготавливают из меди или никеля. Никель - наиболее стойкий по отношению к фтору металл (он покрывается очень прочной пленкой фторида, предотвращающей дальнейшее взаимодействие). [c.457]

    Тантал с пирогаллолом образуют комплекс в среде 4 и. раствора НС1 и 0,0175 М оксалата. Молярный коэффициент поглощения комплекса е в этих условиях составляет 4775. Оптическая плотность растворов пропорциональна концентрациям тантала до 40 мкг мл. Определению мешают молибден (VI), вольфрам (VI), уран (VI), олово (IV). Влияние ниобия, титана, циркония, хрома, ванадия (V), висмута, меди не. существенно, и его можно учесть введением их в холостой раствор. Определению тантала мешает фторид, платина, поэтому сплавление анализируемых проб нельзя проводить в платиновой посуде. [c.386]

    Методы определения. В воздухе. ГХ чувствительность 5 мг/м точность 16 % время анализа 15 мин (Юринов и др.). В воде. Определение основано на образовании окрашенных соединений при взаимодействии Д. с пиридином и щелочью чувствительность метода 0,2 мг/л определению мешает присутствие меди, фторидов,хлоридов, нитратов и нитритов (>Ю мг/л каждого), железа (И) и (III) (>5 мг/л), а также других галогенорганических веществ (Новиков). [c.620]


    Трудности, возникающие при попытке отделения методов микроанализа от методов определения следов, особенно четко проявляются в методах, использующих селективное испарение в дуге. Метод испарения с носителем [8] является таким примером. Разработанный для определения примесей в уране, он был в дальнейшем использован для анализа многих труднолетучих элементов. Носитель (первоначально окись галлия) стал предметом и многочисленных исследований. Наиболее популярные носители, используемые в настоящее время,— гидроксифторид меди, фторид серебра, хлорид серебра, фторид лития и их комбинации. Цель применения носителя — испарение наиболее летучих примесей в зону разряда без испарения и возбуждения спектра основы пробы. Для улучшения прогрева пробу помещают в специальный электрод, который в свою очередь устанавливают на электродо-держатель для уменьшения теплопотерь (рис. 3). В неопубликованной работе, выполненной Тимчуком, Расселом и Берманом [38] в Национальном исследовательском совете в Оттаве, показано, что наиболее подходящим носителем для определения элементов-примесей в чистой меди является Си(ОН)Р. При определении в меди 12 элементов различной летучести (от мышьяка до ванадия) отношение сигнала к фону для всех элементов возросло в 10—100 раз. Таким путем чувствительность онределения мышьяка в меди была повышена от 1,7-10" до 1,8-10 " %, ванадия от 4,3-10" до 5-10 %. Исследователи, естественно, еще не уверены, можно ли считать носитель Си(ОН)Р универсальным, однако возможно, что оп найдет широкое применение для анализа разнообразных материалов. [c.154]

    Небс)л1ялую медную проволоку нагревают до полного исчезновения зеленой окраски, затем погружают (еще горячей) в окись меди и вновь нагревают, пока окись не наплавится па медную петлю. Минимальное количество исследуемого вещества помещают на окись меди и нагревают в бесцветном пламени горелки сначала во внутренней, потом во внещней зоне ближе к нижнему краю. Голубовато-зеленая окраска пламени указывает на присутствие. хлора, брома или йода. Окраска обусловлена парами галоидной меди. Фторид меди нелетуч, и поэтому данная проба непригодна для открытия фтора. [c.369]

    Гидратированные соли меди имеют голубую или зеленую окраску Поляризацией ионов (в частности, усилением поляризуемости аннона) можно объяснить и уменьшение термической устойчивости в ряду СиРг — СыЬ если фторид меди начинает разлагаться при luOO С, то иодид двухвалентной меди не существует в обычных условиях. Поэтому при взаимодействии mSOi и KI протекает не обменная, а окислительно-восстановительная реакция с образованием иодида одновалентной меди  [c.227]

    Аппараты и коммуникации для работы с фтором обычно изготавливают ИЗ меди или никеля. Никель является наиболее стойким по отношению к фтору металлом (он покрывается очень Лрочной пленкой фторида, предотвращающей дальнейшее взаимодействие). [c.468]

    Химическая активность металлов Си, Ag, Au сравнительно невелика. С кислородом реагирует только медь, благородные металлы Ag и Аи не окисляются кислородом даже при нагревании. При комнатной температур Си практически не взаимодействует с фтором вследствие образования прочной защитной пленки фторида. При нагревании Си и Ag реагируют с серой, образуя U2S и AgjS. Хлориды СиСЬ, Ag l, АиСЬ также образуются в результате взаимодействия элементных веществ при нагревании. [c.584]

    НО высока. Определению мешают все редкоземельные элементы, торий, уран, висмут, медь, железо, барий, скандий и др. Для повышения избирательности лучше применять маскирующие реагенты ЭДТА, тартраты, оксалаты, фториды и некоторые другие. [c.79]

    Обычно реакция фтора с парафинами протекает очень бурно, со взрывом, и приводит к получению тетрафторметана или углерода и фтористого водорода. Если фторирование проводить в газовой фазе над твердым катализатором в присутствии инертного газа, то процесс можно замедлить и регулировать так, чтобы в результате получались желаемые продукты. В качестве инертного газа предпочитали пользоваться азотом, катализатором служило фтористое серебро, нанесенное на медь, процесс проводили при температуре около 200°, беря фтор в некотором избытке от теории. Серебро образует два фторида — фторид (А Е) и перфторид (AgF2) серебра последний, вероятно, и является активным фторирующим агентом. В этих условиях н-октан превращается в перфтороктан (октадецилфтороктан)  [c.88]

    Заметим, что в выражении (Х.7) изменение энтальпии АЯ>0, следовательно, это выражение относится, собственно, к эндотермическим реакциям, в которых образование новых молекул, новых химических связей происходит за счет энергии, подводимой извне, например при увеличении давления и при нагревании. При этом энтропийный член уравнения (Х.7) возрастает, и, если температура достаточно велика, то достигается неравенство 7 А5>АЯ. При этом А/ <0, т. е. процесс идет самопроизвольно. Так, реакции восстановления водородом фторидов, бромидов и хлоридов металлов типа ШРб + ЗН2= Ш+6НР являются эндотермическими реакциями. При повышении температуры величина АР для реакции восстановления всех галидов понижается и для многих из них уже при 500 К становится меньше нуля (рис. 48). Благодаря этому уже ниже 300 К наблюдается образование металлического вольфрама на поверхности таких металлов как медь и никель (или ионных кристаллов, вроде флюорита и фторида лития, а также атомных кристаллов типа алмаза) при восстановлении гексафто- [c.148]

    Реакция протекает количественно в присутствии значительного избытка К1. большая часть которого может быть заменена роданидом калия U2I2-+--f 2K fMS u2( NS)2-f 2KI. Количество выделившегося иода эквивалентно содержанию меди. Ход анализа следующий. Отбирают пробу 2—5 см в коническую колбу, разбавляют водой до 25 см , прибавляют 10 см серной кислоты, 0,2—0,4 г фторида калия (для связывания ионов железа), 10 см раствора, содержащего 130 г/дм K NS + 20 г/дм KI, и титруют 0,1 и. раствором тиосульфата натрия в присутствии крахмала. [c.139]

    Их названия образуются из латинского корня названия неметалла с окончанием ид и русского названия менее электроотрицательного элемента в родительном падеже (табл. 1.2). Если менее электроотрицательный элемент может находиться в разных окислительных состояниях, то после его названия в скобках указывают римскими цифрами его степень окисления. Так, СигО — оксид меди (I), СиО — оксид меди (II), СО — оксид углерода (II), СО2 — оксид углерода (IV), SFe — фторид серы (VI). Можно также вместо степени окисления указывать с помощью греческих числительных приставок (моно-, ди-, три-, тетра-, пента-, гекса- и т. д.) стехиометрический состав соединения СО — монооксид углерода (приставку моно часто опускают), СО2 — диоксид углерода, SFe — гексафторид серы, Рез04 — тетраоксид трижелеза. Для отдельных бинарных соединений сохраняют традиционные названия Н2О — вода, NH3 — аммиак, РНз — фосфин. [c.30]

    Со фтором реагируют все металлы без исключения, только аллюминий, железо, никель, медь и цинк в отсутствие влаги, в первый момент образуют плотные пленки фторидов, защищающие металлы от дальнейшего окисления. По той же самой причине и в тех же условиях железо пассивируется в реакции с хлором. Ряд металлов при окислении кислородом образуют плотные защитные пленки оксидов. В соответствии с тем, что при переходе от фтора к азоту (табл. 11.5.) окислительная активность простых веществ уменьшается, все большее число металлов не подвергается окислению. В итоге, с азотом реагирует только литий и щелочноземельные металлы. [c.326]

    Комплексы, обладающие невысокой растворимостью в определенных растворителях, могут быть использованы в аналитических целях. Интенсивно окрашенные вещества находят применение в колориметрических определениях. Более высокий молекулярный вес комплекса по сравнению с молекулярным весом исходной простой соли способствует более точному весовому определению элемента. Часто координационные соединения применяют в волюметрических методах для маскировки мешающих анализу ионов (например, в присутствии фторид-ионов воз-М0Ж1Н0 определение меди, находящейся в растворе в смеси с ионами трехвалентного железа), в качестве титрующих агентов [c.15]

    Химические едвиги в РЭС впервые наблюдал Зигбан в 1957 г. для 1.5-электронов меди, а затем для 25- и 2р-электронов серы. Было установлено, что ЭСЭ серы коррелируют с ее степенью окис-.1ения, т. е. с формальным гшпядом дф Аналогичная корреляция для З -электронов ксенона в ого фторидах приведена на рис. 6.30. Причиной корреляции в обоих случаях, по-видимому, является пропорциональность между и ф. Найдена корреляция непосредственно между ЭСЭ и рассчитанными методом МО эффективными арядами (рис. 6.31). [c.259]


Смотреть страницы где упоминается термин Меди фторид: [c.201]    [c.199]    [c.29]    [c.235]    [c.321]    [c.273]    [c.102]    [c.28]    [c.43]    [c.416]    [c.361]    [c.118]    [c.154]   
Симметрия глазами химика (1989) -- [ c.306 ]




ПОИСК







© 2025 chem21.info Реклама на сайте