Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плотность энергии

    Первый член скобки представляет собой величину химического потенциала растворителя для идеального раствора. Второй член описывает отклонения от идеальности, обусловленные особенностями структуры полимерных молекул. Величина % является параметром, специфичным для данной системы полимер — растворитель и называется обычно параметром взаимодействия. Этот параметр включает в себя характеристику энергетического взаимодействия полимера с растворителем, определяемую разностью корней квадратных из плотностей энергии когезии полимера б и растворителя 6о, а также специфические для данной системы [c.33]


    Обусловлено это тем, что именно в случае эластомеров высокая термодинамическая гибкость изолированных макромолекул сочетается со сравнительно малым межмолекулярным взаимодействием в полимере. Количественным выражением этого взаимодействия является плотность энергии когезии — величина, в случае жидкости численно равная энергии, необходимой для испарения 1 см вещества. Величина энергии когезии или непосредственно с ней связанного параметра растворимости б (см. стр. 33) является важной характеристикой полимера, от которой в значительной мере зависят способность его растворяться в тех или иных средах, степень совместимости полимеров друг с другом и с пластификаторами, температура стеклования, газо- водопроницаемость и целый ряд других свойств. [c.41]

    Плотность энергии когезии, МДж/м 271 [c.349]

    Плотность энергии когезии, в МДж/м для БНК больше, чем у НК и БСК и повышается с увеличением содержания акрилонитрила  [c.357]

    Масло- и морозостойкость акрилатов зависит от величины алкильного радикала. При к = 2 наблюдается более высокая удельная плотность энергии когезии и, как следствие, высокая маслостойкость и малая морозостойкость. С увеличением длины алкильного радикала падает маслобензостойкость, повышается морозостойкость, увеличивается липкость и ухудшается обрабатываемость полимеров. При Сд и выше наблюдается кристаллизация полимеров [2]. Замена акрилата на соответствующий метакрилат приводит к получению более жестких сополимеров, что объясняется вдвое большей удельной плотностью энергии когезии группы СНз — по сравнению с группами —СНг— или —СН— [3, гл. 1П]. В связи с получением полимеров с более высокой температурой стеклования метакрилаты не применяются в качестве основных мономеров для получения акрилатных каучуков, а используются только при получении пластиков. Низшие алкил-акрилаты и метакрилаты представляют большой интерес для синтеза пленкообразующих латексов [4]. [c.387]

    Отметим, что трещина в этом случае наклонена к лицевой поверхности образца, а величина Кс вычисляется по формуле для К, выведенной для прямого расположения трещины. Формула для К при косом изломе пока отсутствует. Зависимость Кс от толщины можно истолковать также следующим образом []]. При малой толщине, когда излом полностью косой, в момент разрыва утонение перед концом трещины равно нулю и величина пластического раскрытия становится равной толщине образца. Поэтому, на основании [i ] получаем оценку для плотности энергии разрушения G Ст t и, на основании формулы (3.26) оценку для критического коэффициента интенсивности  [c.202]


    В рассматриваемом случае затрата энергии на создание новых поверхностей разрыва (энергия разрушения) фактически определяется работой пластической деформации 6Wp, т. е. 8Г = 6Wp. Эта энергия разрушения отличается от энергии разрушения упругого тела тем, что здесь 5Г целиком определяется затратой энергии на работу пластической деформации. Для идеально упругого хрупкого тела по определению d = О и величина бГ есть часть внутренней энергии, причем плотность энергии разрушения постоянна. В рассматриваемой модели величину у нельзя считать постоянной материала в этом случае [c.215]

    Приведем выражение для плотности энергии разрушения в этой задаче. Поскольку, [c.221]

    AWp = 40о f д dx, AS = 4 А , то величина плотности энергии разрушения [c.221]

    Выражение AL/V в этой формуле характеризует плотность энергии когезии. [c.215]

    Термодинамика необратимых процессов в отличие от классической термодинамики, в которой отсутствует понятие времени и под процессами подразумевается цепочка равновесных состояний, рассматривает именно протекание явлений во времени [8]. Основы учения о переносе энергии были разработаны в магистерской диссертации Н.А.Умова в 1874 г. Уравнение Умова для объемной плотности энергии IV в дифференциальной форме имеет вид  [c.16]

    Результаты экспериментов показывают, что в пределах погрешностей измерений при использованных плотностях энергии и диапазонах частот частичная дистилляция интенсифицируется, что обусловлено ускорением тепломассообменных процессов, но азеотропная смесь не [c.159]

    Таким образом, даже ископаемые ресурсы одного и того же вида по своей качественной характеристике существенно различаются между собой. Тем более сложно сопоставлять ресурсы невозобновляемых топлив и ядерной энергии с возобновляемыми источниками энергии. При этом если ядерное топливо характеризуется высокой степенью концентрации энергии (при делении 1 г урана выделяется 82 ГДж тепловой энергии), то возобновляемые источники энергии характеризуются низкой плотностью и рассредоточенностью энергетического потока. Так, средняя интенсивность солнечного излучения на поверхности Земли оценивается в 160 Вт/м , а средняя плотность энергии, которая может быть получена за счет использования лесного покрова Земли, составляет 0,2 Вт/м [7, 8]. [c.13]

    Струйный генератор используют для различных целей. Очевидно, он просто может работать как обыкновенный источник непрерывного течения жидкости или как смеситель. Основное его применение — в качестве аппарата для эмульгирования, так как в малом объеме у края вибрирующей пластины концентрируется большая акустическая энергия и возникает кавитация. Согласно уравнению (25), такая большая плотность энергии обусловливает малый размер образующихся капель эмульсии. Поэтому звуковые генераторы оказываются весьма эффективными. Например, в гомогенизаторах для получения частиц размером 1 мкм при производительности 5000 л/ч требуется мощность 40—50 л. с., а в струйных генераторах при этих же условиях достаточно 5—7 л. с. В гомогенизаторах давление 500 — 2000 ат, а в струйных генераторах — 75—100 ат. Конструкция аппаратов довольно простая. Единственный элемент, который требует повышенного внимания, — это вибрирующая пластина. При работе в жестких условиях она должна быть заменена уже через несколько месяцев. Наконец, следует указать, что струйные генераторы легко могут быть перестроены на диспергирование твердых тел. [c.49]

    Таким образом, как изменится при дегазации растворяющая способность нефти по отношению к парафинам, будет определяться тем, как при этом изменяется разница между плотностями энергии когезии нефти и парафина. Увеличение этой разницы означает ухудшение растворяющей способности нефти, что приведет к повышению температуры насыщения, и [c.42]

    Ен и Ер - удельные плотности энергии когезии нефти и парафина соответственно. [c.43]

    Вышесказанное легко представить, если обратиться к кривой Семенченко (рис. 1.1). В соответствии с теорией растворов можно считать, что плотность энергии когезии парафина будет соответствовать максимуму растворимости на кривой Семенченко. Тогда для всех нефтей, плотность энергии когезии которых располагается на левой восходящей ветви кривой, разница Е - Ер будет иметь отрицательное значение, а ее абсолютное значение будет уменьшаться по мере дегазации из-за роста энергии когезии нефти. При этом также будет иметь отрицательное значение и температура начала кристаллизации парафина в нефти понизится из-за повышения растворяющей способности последней. [c.43]

    В рамках энергетической модели величина трибологических показателей зависит от плотности энергии. Так, плотность энергии трения определяется соотношением работы трения (обшей энергии трения) и объема нагруженного материала. Износ связан с кажущейся плотностью энергии трения и характеризуется соотношением работы трения и унесенного (разрушенного) объема материала [265]. Разрушенный объем материала можно выразнуь также в виде соотношения трансформировавной энергии и удельной энергии материала, соответствующей его энергетическому насыщению в да-нных условиях. [c.248]


    Натуральный каучук, как и СКИ-3, характеризуегся низким значением плотности энергии когезии, однако иевулканизованные сажевые смеси на основе НК отличаются высокой когезионной прочностью (сопротивление разрыву 1,5—2,0 МПа по сравнению с 0,1—0,4 МПа для СКИ-3), НК обладает также значительно лучшей адгезией к стали и успешно применяется в производстве клеев. Поэтому проблема получения синтетического полиизопрена, по свойствам не уступающего натуральному, была прежде всего связана с выяснением отличий в строении, определяющих различия в свойствах этих двух полимеров. [c.226]

    Полиуретаны на основе кристаллизующихся полиэфиров имеют наибольшее сопротивление разрыву. Высокая механическая прочность их связана со способностью кристаллизоваться и ориентироваться при деформировании. Поэтому естественно, что при сопоставимой плотности энергии когезии прочность кристаллических (или потенциально способных кристаллизоваться при деформировании) полимеров всегда существенно выше, чем аморфных эластомеров. Однако попытки найти связь между температурой плавления кристаллических полиуретанов и такими свойствами, как сопротивление разрыву и раздиру оказались неудачными (табл. 4). Вероятно, объяснение этому факту следует искать в том, что на повышение прочности оказывает влияние только лишь кристаллизация, которая развивается непосредственно в процессе деформирования эластомера. Наглядной иллюстрацией сказанного является сравнение свойств полиуретанов на основе полидиэтилен- и полиэтиленадипинатов последние кристаллизуются уже при растяжении на 50%. [c.535]

    Образование из эпокисей каучукоподобных полимеров связано с раскрытием напряженных окисных циклов под влиянием каталитических агентов и соединением в линейные цепи. Структурной особенностью этих каучуков является присутствие в основной полимерной цепи простых эфирных групп, придающих линейной молекуле большую гибкость [4]. Этот эффект обусловлен, по-видимому, низким потенциалом барьера вращения по связи углерод — кислород. В то же время полярность эфирного кислорода и наличие в цепи внутренних диполей должны привести к усилению межмолекулярных взаимодействий и повышению плотности энергии молекулярной когезии [1, 5, 6]. В результате подвижность цепей и свойства полимеров будет определяться сложным сухммар-ным эффектом двух противоположно действующих факторов [1, 6]. Отсутствие ненасыщенных связей в основной цепи придает эпоксидным каучукам значительную стойкость к действию тепла, кислорода, озона и других агентов по сравнению с непредельными каучуками, полученными на основе диеновых мономеров. [c.574]

    Пользуясь законами электрохимии, можно конструировать и создавать гальванические элементы и батареи, позволяющие получать электрическую энергию в небольщих количествах в нужном месте, а также использовать электрическую энергию для проведения желаемых химических реакций. Примерами таких процессов являются электроосаждение и рафинирование меди. Электрохимические реакщш могут также использоваться в целях предотвращения коррозии металлов с низкими восстановительными потенциалами. Однако пока еще не удалось создать дешевой и легкой аккумуляторной батареи с большой плотностью энергии, а также электрохимических топливных элементов, работающих на широко доступных веществах. [c.195]

    Для того чтобы определить некоторые термины, которые имеют важное значение для ЯКР (и мёссбауэровской спектроскопии, гл. 15), полезно рассмотреть взаимодействие зарядов, диполей и квадруполей с плотностью отрицательного заряда. На рис. 14.1, Л показано взаимодействие положительного заряда, находящегося на оси 2, с отрицательной электронной плотностью. Энергия выражается как — е /г или — еК где К(= — е/г) — электрический потенциал в точке г, в которой находится положительный заряд. На рис. 14.1, показан диполь, находящийся в по- [c.260]

    Рассмотрим смешанное разрушение. Глубина губ среза на поверхности излома у кромки трещины может быть принята по формуле (3.38) равной Гу. Плотность энергии разрушения деформации продольного сдаига в этой зоне будет Gm . В средней части образца, занимающей область t - 2гу, плотность энергии разрушения отрыва будет Gi . Энергия продвижения трещины на еданицу длины  [c.202]

    Отсюда видно, что энергия разрушения не является постоянной материала. Это результат неавтомодельности задачи, так как при распространении трещины контур ее головной части деформируется. Плотность энергии разрушения становится постоянной и равной у = Ообс/2 при достаточно малых внешних нагрузках и длинных трещинах, т. е. при ->оо. Укажем, что с введением величины у условие (3.50) в этой задаче можно записать в виде [c.222]

    В теории молекулярных силовых полей учитывается все мно-гообразне взаимодействий, включая диполь-дипольное, квадру-иоль-квадруполь[1ое и диполь-квадрупольное. Исследованиями в этой области было показано, что растворители, обладающие близкими по величине силовыми полями, взаимно растворимы. Распределение по величине силовых полей различных растворителей приводит к петле Семенченко, на одной ветви которой укладываются слабые взаимодействия, на другой ветви — сильные. В качестве критерия, определяющего энергию взаимодействия, предлагается использовать диэлектрическую проницаемость, плотность энергии когезии. Введено понятие об обобщенных моментах, эффективном заряде и эффективном радиусе. Несмотря на то что теория молекулярных силовых полей достаточно строго описывает механизм взаимодействия молекул в растворе, пользоваться ею для расчета систем практически невозможно [59, 60], поскольку математический аппарат не обеспечен исходными данными в справочной литературе. [c.213]

    На сферическую частицу с размером, меньшим длины волны (т.е. или кН 1, где к=2п1Х - волновое число), в поле плоской волны в направлении волнового вектора действует средняя радиационная сила Г, зависящая от размера частицы, средней объемной плотности энергии й и отношения плотностей среды и частицы а = Рр/Р,. Для несжимаемой частицы [c.55]

    Идея метода Чепмена—Энскога заключается в следующем функция распределения разделяется на две аддитивные части первая — максвелловская у, г), дающая значения локальной концентрации, скорости и плотности энергии в газе вторая используется для определения потоков тепла и импульса. Указанные части функции распределения связаны друг с другом линеаризованным оператором соударения таким образам, что определение теплопроводности и трения сводится к решению линейного неоднородного интегрального уравнения втарого рода. [c.43]

    Объем жидкости VLIQ, используемый для определения парциального молярного объема компонентов при бесконечном разбавлении в смеси, также рассчитывается по линеаризованной зависимости. VOLINDF — это корреляционная зависимость для расчета приведенного объема при бесконечном разбавлении как функции безразмерного аргумента, учитывающего среднюю плотность энергии связи молекул смеси и критические параметры рассматриваемого компонента. Этот довольно сложный аргумент обозначен идентификатором А, равным ТРс/б Т с- [c.138]

    Одним 113 основных параметров оценки межмолекулярного взаимодействия компонентов нефти, удобных для практических целей, является плотность энергии когезии, численно равная от-нощению энтальпии испарения жидкого компонента к его мольному объему [36]. Необходимые данные об энтальпиях испарения для расчета плотности энергии когезии и соответственно параметра растворимости жидких компонентов можно определить либо из непосредственных калориметрических данных, либо по температурной зависимости давления насыщенного пара, описываемой известным уравнением Клаузиуса — Клапейрона, либо по эмпирическим формулам через температуру кипения компонента. Однако энтальпию испарения экспериментально можно определить липль для углеводородов, испаряющихся без разложения. Для тех соединений, температура деструкции которых ниже температуры кипения, приемлемы методы расчета параметра растворимости на основе инкрементов плотности когезии отдельных групп атомов (ЛЯ ) [37]  [c.20]

    Плотность энерги[[ когезии для полярного комгюнента 1 представляется в виде суммы полярного и неполярного вкладов [c.40]

    Как мы видели при рассмотрении метода избыточных величин Гиббса, плотности энергии fa и /р. являющиеся в объеме фаз постоянными, вблизи поверхности раздела фаз возрастают под действием энергии взаимодействия фаз или в результате нескомпенси-рованности межмолекулярных сил в поверхностном слое. Таким образом, переход от энергетического уровня а-фазы /а к энергетическому уровню р-фазы /р соверщается через энергетический барьер, отвечающий поверхностным избыткам (площадь языка соответствует поверхностным избыткам 5 — сгущению энергии в поверхностном слое). [c.67]

    Рис 1,1 Растворимость парафина (крива I) и нафталина (крива II) в растворителях с различной плотностью энергии когезии при 25 °С Растворители 1 - пентан 2 - додецилбензол 3 - шиспогехсан 4 - изопропилбешол  [c.23]

    При добыче нефти часто происходит ее дегазация. Поэтому представляет интерес, как при этом изменяется растворяющая способность дисперсионной среды. Углеводородные азы в обычных условиях характеризуются низкими значениями плотности энергии когезии, поэтому удаление их из системы всегда будет повышать плотности энергии когезии дисперсионной среды нефти. Следовательно, как при этом будет изменяться растворимость твердых компонентов, будет зависить от того, в какой из ветвей кривой Семенченко будет находиться система в данных конкретных условиях. [c.24]

    Следующим фактором, связанным с составом нефти и способным повлиять на формирование дисперсной структуры нефтей, является количество и качество дисперсионной среды, которая формируется из незастывающей части. Этот фактор влияет также непосредственно на процесс отложения парафинов на поверхности оборудования. Так, при изучении па-рафинизации промыслового оборудования в условиях месторождений Западной Сибири было установлено /21/, что легкие маловязкие нефти с больщим содержанием легких фракций, выкипающих до 300 °С, способствуют более быстрому накоплению отложений парафина по сравнению с нефтями большей плотности и вязкости. Отмечается также, что с увеличением содержания ароматических углеводородов в нефти (т.е. с ростом плотности энергии когезии дисперсионной среды) вероятность образования плотных и прочных парафиновых отложений уменьшается. [c.36]

    Таким образом, природные нефти, не подвергнувшиеся термической обработке, представляют собой термодинамически неравновесные и агрега-тивно неустойчивые лиофильные дисперсные системы - золи, в которых дисперсные частицы, способные растворяться в дисперсионной среде, атре-гативно стабилизированы благодаря адсорбции на их поверхности естественных ПАВ, присутствующих в самих нефтях. В нефтях как в лиофильных дисперсных системах плотности энергии в дисперсной фазе и дисперсионной среде различаются незначительно. Поэтому, в отличие от лиофобных дисперсных систем, в которых диспергирование осуществляется с обязательной затратой внешней работы на преодоление межмолекулярных сил при дроблении вещества дисперсной фазы, в нефтях благодаря небольшой межфазной энергии работа диспергирования настолько невелика, что для ее осуществления достаточно энергии теплового движения. При этом возрастание энтропии системы в результате более равномерного распределения диспергированного вещества с избытком компенсирует увеличение свободной поверхностной энергии вследствие возрастания поверхности раздела фаз. Условие самопроизвольного диспергирования выражается неравенством /34 / [c.37]

    Согласно теории растворов неэлектролитов /11/, взаимораствори-мость компонентов тем выше, чем меньше различие между плотностями энергии когезии их молекул. При падении давления в системе при всех ситуациях происходит удаление из нефти газов, компонентов, обладающих наиболее низкой плотностью энергии когезии. Следовательно, при дегазации, в результате падения давления, независимо от конкретной ситуации всегда происходит повышение усредненной величины плотности энергии когезии нефти. Такой эффект будет тем выше, чем ниже усредненное значение молекулярной массы удаляемого газа. [c.42]


Смотреть страницы где упоминается термин Плотность энергии: [c.483]    [c.520]    [c.194]    [c.34]    [c.50]    [c.92]    [c.137]    [c.141]    [c.48]    [c.515]    [c.164]    [c.165]    [c.8]    [c.24]   
Водород свойства, получение, хранение, транспортирование, применение (1989) -- [ c.494 , c.537 ]

Введение в теорию комбинационного рассеяния света (1975) -- [ c.12 , c.20 , c.158 , c.159 ]




ПОИСК







© 2025 chem21.info Реклама на сайте