Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Натрий как теплоноситель

    Выделяющееся в реакторе тепло отводится теплоносителем, роль которого могут играть различные вещества в зависимости от назначения и теплонапряженности реактора. В частности, могут использоваться вода под высоким давлением расплавленные металлы натрий, калий, свинец, висмут, а также газы гелий, азот, углекислый газ. [c.96]


    Натрий используется в металлотермии. Металлический натрий и его жидкий сплав с калием используется в органическом синтезе. Как восстановитель часто применяется амальгама натрия. Натрий используется также в качестве теплоносителя в ядерных энергетических установках, в клапанах авиационных двигателей, в химических [c.488]

    В табл. 55 дана сравнительная характеристика жидких металлов, воды, дифенильной смеси и расплава солей. Весьма эффективным теплоносителем с точки зрения значений коэффициента теплоотдачи, температуры плавления и кипения, удельной теплоемкости, а также стоимости перекачки является натрий. Недостатком натрия является высокая активность по отношению к кислороду. Он является очень опасным горючим и взрывчатым веществом. [c.329]

    Случаи воспламенения химических продуктов (органических красителей и полупродуктов) происходили при ведении процесса сушки вследствие неправильного выбора теплоносителя. Поэтому при сушке продуктов, имеющих низкую температуру воспламенения, важнейшим условием является правильный выбор теплоносителя, температура которого не должна превышать опасных пределов. Форма, размеры и материал оборудования должны быть такими, чтобы на их стенки не налипали органические продукты, так как это может привести к локальным перегревам и воспламенению. Горючие вещества могут воспламениться при воздействии на них концентрированных азотной и серной кислот активные щелочные металлы (натрий и калий) могут воспламениться при воздействии на них воды. Такие металлы нужно хранить в герметичной таре. [c.338]

    Вода и пар являются наиболее безопасными теплоносителями, особенно в процессах с легковоспламеняющимися и взрывоопасными продуктами, но они не всегда могут обеспечить точное поддержание заданной температуры. В качестве металлов-теплоносителей применяют расплавленные калий, натрий, свинец, ртуть, олово, висмут и различные сплавы. Однако применение ртути и свинца ограничивается их токсичностью, а калий и натрий бурно реагируют с водой, и их использование в качестве теплоносителей требует принятия дополнительных мер предосторожности, поэтому они используются относительно редко. Широко в химической промышленности приме- [c.146]

    Окислительное дегидрирование осуществляют в реакторе, показанном на рис. 2. Трубки имеют диаметр около 25 мм и помещены в жидкий теплоноситель даутерм или в расплавленную смесь нитратов и нитритов натрия и калия. Реакцию ведут в интервале температур 290—425 °С при соотношении метанол/воздух около 1 13. В качестве катализатора используют молибдат железа с отношением Ре/МоОз от 3 до 5. Катализатором может быть также молибдат висмута, который будет описан более подробно ниже в данной главе. На молибдате железа конверсия приближается к 100%, причем в катализате содержится менее [c.155]


    Процесс с промежуточным солевым теплоносителем [4] разрабатывается и исследуется М. В. Келлогом. В нем для парокислородной газификации угля при давлении 75—80 кгс/см (7,5—8 ГПа) в качестве теплоносителя используется расплавленный карбонат натрия, имеющий температуру 950°С. Каталитический эффект карбоната натрия обеспечивает разложение углеводородов высшего ряда при сохранении неизменным равновесия между метаном и коксовым остатком. Зола удаляется также в расплавленном виде. [c.169]

    При обработке образца измельченного кокса замедленного и термоконтактного коксования на порошкообразном теплоносителе сульфидом натрия [45] появлялось характерное для дисульфидов интенсивное темно-зеленое окрашивание. Однако содержание серы в коксе до и после обработки сульфидом натрия оказалось практически одинаковым. Это не противоречит положению о малой прочности связей 5—8 (72 ккал/моль). Такие связи должны обрываться в условиях получения кокса. [c.143]

    В качестве теплоносителя для пиролиза тяжелых нефтепродуктов в этом процессе применяются менее тугоплавкие вещества, например, едкий натр, имеющий температуру плавления 318° С. [c.90]

    Появление атомных реакторов открыло новую область применения жидких металлов и расплавленных солей как теплоносителей для атомных электростанций [6, 7, 81. Особенное внимание было уделено жидким натрию, калию, МаК (натрий-калиевому сплаву), литию, свинцу, висмуту, ртути [91, хлоридам и фтористым соединениям щелочных и щелочноземельных металлов [101, а также их гидроокисям. Смесь нитрит натрия — нитрат натрия — нитрат калия не привлекла большого внимания применительно к атомной энергетике, частично потому, что имели место несколько взрывов при использовании этого вещества в ваннах для термообработки при температурах свыше 500° С. [c.267]

    Нагревание ртутью и жидкими металлами. Для нагрева до температур 400—800 С и выше в качестве высокотемпературных теплоносителей могут быть эффективно использованы ртуть, а также натрий, калий, свинец и другие легкоплавкие металлы и их сплавы. Эти теплоносители отличаются больщой плотностью, термической стойкостью, хорошей теплопроводностью и высокими коэффициентами теплоотдачи. Однако жидкие металлы и их сплавы характеризуются очень малыми значениями критерия Прандтля (Рг =s 0,07). В связи с этим коэффициенты теплоотдачи от жидких металлов следует рассчитывать по специальным формулам .  [c.320]

    Большинство металлических теплоносителей огне- и взрывобезопасны и практически не действуют на малоуглеродистые и легированные стали. Исключение составляют калий и натрий, которые отличаются чрезвычайно высокой химической активностью, требуют применения нержавеющих сталей и воспламеняются со скоростью взрыва. [c.320]

    Легкоплавкие металлы, кроме ртути, натрия, калия и их сплавов, используются главным образом в качестве промежуточных теплоносителей для нагревательных бань. Однако иногда они находят применение в нагревательных установках с естественной и особенно с принудительной циркуляцией. [c.320]

    Высокая электропроводность металла используется для передачи токов большой силы по трубам, заполненным натрием. Натрий обладает высокой теплопроводностью, поэтому применяется в качестве теплоносителя в различных двигателях и установках-Широкое применение находит натрий в качестве восстановителя многих металлов из их соединений титана, циркония, тантала, ниобия. [c.519]

    Натрий используется в металлотермии. Металлический натрий и его жидкий сплав с калием используются в органическом синтезе. Как восстановитель часто применяется амальгама натрия. Натрий используется также в качестве теплоносителя в ядерных энергетических установках, в клапанах авиационных двигателей, в химических производствах, где требуется равномерный обогрев в пределах 450— 650°С. [c.591]

    В быстрых реакторах уран-238 можно почти полностью использовать в качестве ядерного горючего. Кроме огромной тепловой энергии (теплоносителем является жидкий натрий), которую можно преобразовать в электрическую, увеличение числа работающих атомных электростанций приводит к еще большему (см. 7.2 и рис. 7.5) производству ядерного топлива — плутония-239. [c.74]

    Металлический натрий используется в теплоносителях для атомных реакторов на быстрых нейтронах, а также в химических производствах, где требуется равномерный обогрев в пределах 450— 650 "С. [c.258]

    Применение. Из щелочных металлов наибольшее применение находит натрий. Его используют для получения пероксида натрия, органических синтезах, для получения ряда технически важных металлов (Т1. Zr, Та. Nb) металлотермическим методом, как теплоноситель в ядерных реакторах, для осушки органических растворителей. [c.326]


    Металлические натрий и калий используются для получения пе-рекисных соединений этих металлов, применяются в качестве теплоносителей в ядерных реакторах, в качестве катализаторов в некоторых методах производства синтетического каучука. [c.51]

    Применение в энергетике. Литий применяется в химических источниках тока натрий и сплав его с калием являются экономичным теплоносителем в атомных реакторах, так как они не замедляют цепную реакцию деления ядер урана, обладают высокой теплоемкостью и теплопроводностью. Цезий и рубидий легко теряют электроны под действием света (фотоэффект), поэтому широко применяются для изготовления фотокатодов, используемых в разнообразных измерительных схемах, устройствах фототелеграфии, звуковоспроизведения оптических фонограмм, в передающих телевизионных трубках и др. [c.227]

    Кроме того, металлический натрий применяют как теплоноситель в охлаждающем контуре одной из конструкций ядерных реакторов, работающих на быстрых нейтронах, а также в качестве катализатора. [c.13]

    Первый в мире синтетический каучук, полученный в 1928 г. акад. С. В. Лебедевым, был назван натрийбутадиеновым, так как натрий явился катализатором процесса полимеризации бутадиена. Натрий используют как восстановитель в органическом синтезе, в частности для восстановления жирных кислот в высшие спирты, применяемые в производстве синтетических моющих средств. Высокая теплопроводность натрия и легкость его превращения в жидкость являются причинами,, объясняющими использование этого элемента в качестве теплоносителя для обеспечения равномерного обогрева аппаратов химической промышленности, в атомных реакторах, в клапанах авиационных двигателей, в машинах для литья под давлением. Из сплавов свинца, содержащего 0,58% Ыа, девают подшипнику осей- железнодорожных вагонов, а сплав свинца с 10% Ыа идет иа приготовление антидетонатора моторного топлива — тетраэтилсвинца. Иногда натрием заменяют в электротехнике медь которая в 9 раз тяжелее этого металла шины для больщих токов делают из стальных труб, заполненных натрием. Большую реакционную способность [c.297]

    Этими же способами получают сплав калия с натрием, который применяется как жидкий металлический теплоноситель в атомных реакторах. Сплав калия с натрием используется так же, как восстановитель в производстве титана. [c.170]

    В промышленных условиях щелочной гидролиз ортохлорфенола-проводят едким натром в присутствии катализатора в реакторах,, выполненных из специального сплава. Реактор снабжен рубашкой для обогрева высокоюипящим органическим теплоносителем (ВОТ), а также двумя перемешивающими и одним разгрузочным шнеком. Для поддержания температуры реакционной массы авто-матически регулируется подача в реактор горячего или холодного теплоносителя. Конденсация испаряющейся в процессе реакции воды происходит в выносном конденсаторе. Процесс щелочного гидролиза является периодическим. [c.368]

    В качестве характерной конструкции контактного аппарата с катализатором, загруженным в трубках, приведен аппарат для каталитического окисления нафталина или ортоксилола во фталевый ангидрид нри температуре 400—430°С [23]. Реакция окисления нафталина идет с больншм выделением теплоты и в то же время требует тонкого регулирования температуры отклонение температуры от оптимальной на 4—6°С уже вызывает существенное нарушение процесса. Указанное обстоятельство и определило конструкцию аппарата. Он представляет собой теплообменную трубчатку с трубками малого диаметра 30x2 мм, в которые загружается катализатор. В межтрубном пространстве циркулирует промежуточный теплоноситель — расплав солей (смесь нитрата и нитрита натрия). Применение жидкого теплоносителя позволяет вести процесс в очень мягком температурном реж41ме — разность температур между теплоносителем и реакционной зоной не превышает б—8°. [c.209]

    Расомотрены [99] инженерные аспекты выделения радиоактивных криптона и ксенона из защитной атмосферы (аргон) ядерного реактора на быстрых нейтронах с жидким натрием в качестве теплоносителя —рис. 8.30. [c.318]

    Они представляют собой различного вида теплообменники, в трубках (реже — в межтрубном пространстве) которых находится катализатор (рис. VI 1.4). В качестве теплоносителя применяют газы, высококипящие органические теплоносители, расплавленные металлы (натрий, ртуть, сплавы), расплавленные соли. Температуру в кипящих банях регулируют, изменяя давление инертного газа (азота) над уровнем теплоносителя в бане. Если теплоноситель не является кипящей жидкостью, применяют искусственную циркуляцию (лцбо прокачивают теплоноситель через систему реактор — теплообменник, либо устанавливают мешалку в самом реакторе). Из-за малой теплоемкости и низких коэффициентов теплоотдачи газы в качестве теплоносителей применяют только для проведения реакций с относительно малым тепловым эффектом. [c.267]

    Эта реакция проводится в паровой фазе в трубчатом реакторе при неожиданно низких температурах (200— 300°С). Большое количество тепла, выделяющегося в ходе реакции, может быть отведено потоком азота или другого инертного газа, циркулирующего в реакторе. Если циркуляцию газа удается осуществлять достаточно экономично, то в этих целях может быть использован даже избыток этилена. Если теплоносителем явля ется этилен, то исчезает необходимость использования трубчатого реактора вполне подходит полочный реактор с несколькими слоями катализатора, показанный на рис, 8. Катализаторами обычно служат благородные металлы, нанесенные на оксиды кремния или алюминия и в некоторых случаях модифицированные небольшими количествами металлов группы железа или щелочными металлами (натрий и калий). [c.158]

    Подробное исследование теплоотдачи от одиночных поверхно стей и от трубных пучков (змеевиков) к слою пены с обобщением собственных опытных данных, а также результатов многих предыдущих работ в виде расчетных критериальных уравнений было выполнено в лабораторной укрупнешой модели пенного аппарата, с внутренними теплообменниками 1338, 356, 362]. Опыты были проведены при развитом пенном режиме (Шг = 0,4 3 м/с) в системах воздух — вода, а также воздух — растворы глицерина, олеата натрия, этилового спирта. Водные растворы органических веществ применяли с целью установить влияние физических свойств вспеви-ваемей жидкости на показатели теплопередачи. Для системы вода воздух высоту слоя пены изменяли от 100 до 360 мм. Величину об " щего коэффициента теплопередачи определяли-по-формуле (11.23), причем рассчитывали как среднеарифмети.ческую разность температур между теплоносителем и пеной. Коэффициент теплоотдачи от теплообменника к пене а находили по формуле (11.46) по известной величине К . [c.117]

    Предварительно упаренный раствор N82804 с начальной влажностью 70—75% подают в сушильную камеру 1 двумя форсунками 2. Сушку проводят с использованием дымовых газов, поступающих в нижнюю подрешеточную зону с температурой 750 °С. В средней части сушилки установлена перфорированная решетка 4, на которой в процессе сушки образуется кипящий слой 3. Сочетание сушки в распыленном состоянии и дополнительное обезвоживание в кипящем слое при наличии противоточного режима движения теплоносителя позволяет достичь низкой конечной влажности продукта (<0,1 %). Высушенный сульфат натрия с температурой 150°С самотеком выгружается через течку, расположенную в нижней части кипящего слоя. Топочные газы с температурой 150 °С, содержащие пылевидные фракции соли, выходят через штуцер. Отделение пыли от газового потока проводят в циклоне и [c.240]

    В промышленной практике применяют такие теплоносители, как смесь дифенила и дифенилоксида, известную под названием даутерма, ртуть и др. Температура кипения даутерма при атмосферном давлении равна 257 °С, а при температуре 350 °С абсолютное давление насыщенных паров даутермы составляет приблизительно 0,6 МПа. Однако скрытая теплота его конденсации значительно ниже, чем для водяного пара и составляет 251 кДж/кг при атмосферном давлении. При нафеве до температуры выше 400 °С находит применение смесь азотнокислых и азотистокислых солей натрия и калия. Так, смесь солей, состоящая из NaNOj (40 %), NaN03 (7 %) и KNO3 (53 %) имеет теплоту плавления 81,6 кДж/кг, температуру плавления 142 °С, теплоемкость 1,6 кДж/(кг К) и вязкость при 260 °С, равную 4 мПа-с, а при 538 °С — 1,0 мПа с. В частности, такой теплоноситель применялся на установке каталитического крекинга с неподвижным слоем катализатора. [c.596]

    В водяных реакторах высокого давления атомных электростанций трубы теплообменников изготавливают в основном из отожженного инконеля 600. Теплоноситель реактора поступает в трубы при 315 С и выходит при температуре на 30—35 °С ниже. Вода, контактирующая с наружной поверхностью труб, проходит подготовку дистилляцией (минимум растворенных солей и кислорода, слабая щелочность создается с помощью NH3). Утоньшение и межкристаллитное КРН труб наблюдается на входных участках вблизи трубной доски в щелях и местах отложения шлама [И ]. Анализ смывов этих отложений показал, что они имеют щелочную реакцию и содержат большое количество натрия. На основании этих результатов для ускоренных испытаний на стойкость к КРН в условиях работы паровых установок сплав помещали в горячие растворы NaOH (290—365 °С). Выяснилось, что термическая обработка инконеля 600 при 650 °С в течение 4 ч или при 700 С в течение 16 ч и более значительно повышает его стойкость к КРН в растворах NaOH [9, 12, 13]. Попутно дости- [c.364]

    Первое промышленное применение жидких металлов в теплотехнике относится к 1923 г., когда пары ртути были использованы в цикле электростанции 141. Расплавленная соль, однако, не использовалась в промышленной практике до 1937 г., когда ее применили в качестве теплоносителя при переработке нефти [51. Смесь нитрита натрия, нитрата натрия и нитрата калия была с успехом применена на заводе Гудри на установке для крекинга нефти. С тех пор эта же самая смесь использовалась и при решении ряда других задач переработки нефти и химической технологии. [c.267]

    Принципиальная технологическая схема установки (рис. 104) для приготовления смазок на осажденном силикагеле состоит из блоков приготовления силикагеля и приготовления смазки. Гидрогель получают дри смешении водных растворов силиката натрия и коагулянта — подкисленного раствора сернокислого аммония. Для придания гидрофобности полученный гель подвергают поверхностной этерификации к-бугиловым спиртом с получением бутоксисиликагеля. Этерификацию проводят в автоклавах 1 и 4, обогреваемых циркулирующим теплоносителем (дитолилметаном), с удалением спирта в вакуумных сушильных камерах 2 и 3. [c.376]

    Температуры плавления и кипения. Температурные характеристики теплоносителя (см. табл. 2) имеют важное практическое значение и должны учитываться при выборе теплоносителя. Чем ниже температура плавления, тем меньше вероятность возникновения его застывшей корки при использовании теплоносителя как греющей среды, поэтому смеси, составленные из КНОз и НаМОг, предпочтительнее, чем каждая соль в отдельности (Гцл—300-4-350°С), и тем более ВаСЬ, имеющая температуру плавления ЭбО С. Температура кипения определяет возможные пределы применения теплоносителя. Верхний предел применения теплоносителя должен быть на 100—150°С ниже температуры кипения. В противном случае у поверхности теплогенератора будет образовываться пленка из паров теплоносителя, существенно снижающая эффект теплоотдачи. Поэтому калий и натрий могут применяться в качестве теплоносителя только до температур порядка 600—700°С, в то время как литий до 1200°С. Этим и объясняются преимущества лития как теплоносителя, хотя. его температура плавления несколько выше, чем у калия и натрия. [c.131]

    Для того чтобы создать равномерное нагревание и избежать перегрева, широко используются различные бани, в которых теплоносителями могут быть вода, воздух, различные органические жидкости, сплав Вуда (т. пл. 61 °С), расплавы солей и т. д. Водяные бани нельзя применять для нагревания сосудов, содержащих металлический калий или натрий. Схема устройства воздушной бани изображена на рис. 6. [c.12]

    Важнейшие области применения натрия — это атомная энергетика, металлургия, промышленность органического синтеза. В атомной энергетике натрий и его сплав с калием применяются в качестве жидкометаллических теплоносителей. Сплав натрия с калием, содержаш,ий 77,2% (масс.) калия, находится в жидком состоянии в широком интервале температур (темп, плавл. -12,8°С), имеет высокий коэффициент теплопередачи и не взаимодействует с большинством конструкционных материалов ни при обычных, ни при повышенных температурах. В металлургии натрийтермическим методом- получают ряд тугоплавких металлов, а восстанавливая натрием КОН выделяют калий. Кроме того, натрий используется как добавка, упрочняющая свинцовые сплавы. В промышленности органического синтеза натрий используется при получении многих веществ. Он служит также катализатором при получении некоторых органических полимеров. [c.385]

    К. служит катализатором синтеза некоторых видов каучука. Сплав К. натрием является теплоносителем в атомных реакторах и восстановителем в производстве титана, Ё лабораторной практике им пользуется для осушки г зов и освобождения йх от кислброда. Йаи-большее практическое значение имеют соли К- (см. Калия соединения). [c.114]

    Как литий и натрий, металлический калий применяют в качестве катализатора для получения некоторых видов синтетического каучука, а его сплав с натрием служит теплоносителем в атомных реакторах методом калнйтермин производят чистый титан. В настояшее время основным потребителем-, калня схало производство его пероксида (см. гл. XIII, 2), используемого для регенерации О2 из СО2 в подводных лодках и космических аппаратах. Калий, рубидий и особенно цезий прн освещении испускают электроны, что исцользуют при изготовлении фотоэлементов. [c.299]

    К материалам, не подверженным химическим превращениям в пределах температур сушки, относятся многие минералы, руды и продукты неорганической технологии, например, такие, как плавиковый шпат, апатит, хромит, кальцит, хлориды калия и натрия и другие. Их можно подвергать, интенсивной сушке при достаточно высоких температурах. При-выборе способов и режимов высушивания в этнх случаях принимают во внимание дисперсность материала, его твердость, хрупкость, температуру плавления или размягчения и другие параметры, от которых, в частности, зависит и пыление. Естественно, что, как правило, стремятся обеспечить минимальный вынос пыли из сушила. Однако иногда, наоборот, создают условия для удаления с потоком теплоносителя наиболее мелкой фракции материала для улучшения его качества, что легк9 достигается, например, в аппаратах с кипящим слоем. [c.361]

    Металлохимия. Металлы подгруппы калия между собой образуют непрерывные твердые растворы. Натрий не дает непрерывных твердых растворов с другими щелочными металлами и согласно этому металлохимическому критерию стоит ближе к литию. Для щелочных металлов наиболее характерно образование металлидов с S- и s/5-металлами, а также с элементами с полностью заполпеиными (л—1)(з -орбиталямп (металлы подгрупп. меди и цинка). Так как щелочные металлы не смешиваются с жидким алюминием, они с ним не образуют пи твердых растворов, ни металлидов. В то же время литий и натрий дают металлиды с галлием и индием. С переходными металлами с дефектной (п—1) -оболочкой щелочные металлы не взаимодействуют, а при высоких температурах наблюдается расслоение в широком диапазоне концентраций. Устойчивость Ti, V, Сг, Fe, Nb, Та, Zr к действию расплавленных щелочных металлов позволяет использовать последние в качестве теплоносителей в авиационных двигателях и в первичном контуре атомных реакторов. [c.118]


Смотреть страницы где упоминается термин Натрий как теплоноситель: [c.787]    [c.89]    [c.106]    [c.427]    [c.548]    [c.347]    [c.169]    [c.260]   
Химия в атомной технологии (1967) -- [ c.20 , c.229 ]




ПОИСК





Смотрите так же термины и статьи:

Теплоноситель



© 2025 chem21.info Реклама на сайте