Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фторид металлов

    Фторирование углеводородов осуществлялось несколькими путями. Их можно классифицировать следующим образом а) реакция с элементарным фтором б) реакция с фторидом металла в) электролиз в безводном фтористом водороде г) реакция с хлором (или бромом) с последующим обменом галоида в результате взаимодействия с неорганическим фторидом или фтористым водородом. [c.68]


    В молекуле фтора этих дополнительных связей нет (фтор не имеет ( -орбиталей) и поэтому его молекула менее прочна. Сродство к электрону у фтора несколько меньше, чем у хлора, но больше, чем у брома, и составляет 350 кДж/моль атомов. Стандартный окислительно-восстановительный потенциал фтора очень высок ( + 2,85 В) фтор — сильнейший окислитель, способный оттягивать электроны даже от атома кислорода. Ион фтора по размерам почти точно равен иону кислорода О -, поэтому оба иона образуют соединения, похожие друг на друга. Между фторидами ионного тина, например фторидом натрия, и оксидами, например оксидом кальция, наблюдается сходство в строении кристаллической решетки. По ряду свойств фториды металлов резко отличаются от хлоридов и бромидов. Так, фторид серебра растворим в воде, в то время как его хлориды и бромиды почти нерастворимы. [c.194]

    Многие фториды металлов в низких степенях окисления получают действием раствора HF на оксиды, гидроксиды, карбонаты и пр., например  [c.282]

    Фторирование фторидами металлов. Реакция фторида металла с углеводородом, сопровождающаяся образованием фторированного парафина, является удобным методом замещения атома водорода фтором. Реакция эта, несмотря на то, что она экзотермическая,. в противоположность реакции с фтором гораздо легче контролируется и в значительно меньшей степени сопровождается разрывом углерод-углеродной связи. Кроме того, образование полимерных веществ минимально, следовательно, получаются соответственно более высокие выходы желаемых продуктов. [c.71]

    Электрохимическое фторирование начало развиваться лишь в последнее время, по оно имеет ряд преимуществ по сравнению с только что описанными методами. Сущность его состоит в следующем при электролизе безводного фтористого водорода (с добавлением фторидов металлов для повышения электропроводности) выделяющийся на аноде фтор немедленно реагирует с растворенным или эмульгированным в жидкости органическим веществом. Благодаря протеканию реакций в жидкой фазе при перемешивании, достигается хороший теплоотвод и суы ествуют широкие возможности регулирования процесса. При этом не приходится предварительно получать и очищать молекулярный фтор, который все равно производят в промыщленности методом электролиза. Наилучшие результаты электрохимическое фторирование дает при синтезе перфторзамещенных карбоновых кислот, простых и сложных эфиров, аминов, сульфидов и других соединений, растворимых в жидком фтористом водороде. [c.162]


    Первыми по времени были процессы на хлориде алюминия, сейчас они утратили практическое значение. Изомеризация парафиновых углеводородов на фторидах металлов не нашла еще промышленного применения. [c.3]

    Трифторид кобальта. Реакции углеводородов с трифторидом кобальта лучше всего осуществлять путем проведения паров углеводорода над нагретым стационарным слоем фторирующего агента [1]. Удобный лабораторный аппарат представляет собой обогреваемое током плоское металлическое корыто из меди, никеля, монеля или стали. Корыто неплотно, в большинстве случаев приблизительно до половины заполняется фторидом металла. Видоизменением этого прибора для проведения реакции в больших масштабах является прибор, состоящий пз цилиндричеС1С0Г0 сосуда с вращающейся мешалкой для поддержания фторирующего агента в высокодисперсном состоянии [6]. Выходящие из реактора продукты могут собираться р холодных ловушках или переходить в дополнительные реакторы для дальнейшего фторирования. [c.72]

    На алюмоплатиновом катализаторе, промотированном фтором, реакция изомеризации парафиновых углеводородов не происходит в отсутствие водорода если катализатор модифицирован хлором, реакция в начальный период протекает и в отсутствие водорода (то же явление имеет место и на фторидах металлов V и VI групп, активированных фтороводородом), но с течением времени ее скорость постепенно уменьшается. [c.35]

    В последнее время в качестве перспективных катализаторов изомеризации парафиновых углеводородов рассматриваются каталитические системы - фториды металлов V и VI групп периодической системы, промотированные фтороводородом. На этих катализаторах реакция изомеризации протекает при 20-50 °С [69, 70]. [c.43]

    В других методах фторпроизводные получают обработкой хлорпроизводных фторидами металлов (или HF в их присутствии)  [c.274]

    Кроме освещения помещений, городских улиц, морских маяков и кораблей дуговые лампы с угольными электродами заняли важное место в технике кино- и фотосъемок, а также в качестве кинопроекционных ламп (с 1895 г.). В дальнейшем перед первой мировой войной Г. Бек сконструировал угольную дугу высокой интенсивности. Эффект высокой интенсивности угольной дуги создавался за счет введения в фитиль анода фторидов металлов редких земель. Широкое использование дуговых ламп с угольной дугой высокой интенсивности началось с 1935 года. Это продолжалось до конца шестидесятых годов текущего столетия. Большую роль мощные прожекторные установки с дугой высокой интенсивности играли во второй мировой войне при отражении воздушных атак противника и в наступательных операциях. [c.12]

    Для сдвига равновесия влево достаточно добавить в раствор (а) немного щелочи, а в раствор (б)-немного сильной кислоты. Щелочь создает высокую концентрацию ионов ОН , а сильная кислота - высокую концентрацию ионов Н по сравнению с исходными растворами фторида металла и соли хрома(Ш). Соли, образующие осадки при гидролизе, можно удержать в растворе также добавлением [c.73]

    Однако следует еще раз отметить, что фториды металлов способны образовывать МСС без окислительных добавок. При этом захват электрона у углеродной матрицы происходит по следующему механизму [6-37] [c.289]

    Синтез МСС углеродная матрица-фторид металла 1-фторид металла 2 [6-89] проводится в 2 этапа (см. табл. на с. 313). [c.312]

    МСС фторид металла-серная кислота [6-89] [c.312]

    Углеродная матрица в данном случае должна быть из кристаллического природного графита или высокоориентированного пиролитического графита [6-154], а фториды металлов [c.409]

    Фторид водорода и фториды металлов. При взаимодействии с водородом и металлами наиболее ярко проявляются окислительные свойства фтора. Реакция между газообразными На и Рг протекает [c.352]

    Фториды металлов с преимущественно ионной связью функционируют как основные вещества. Поэтому они образуют комплексы с фторидами металлов в высокой степени окисления, проявляющими себя как кислотные фториды. Хотя 4)торид-ион является лигандом не очень сильного кристаллического поля (образует, как правило, высокоспиновые комплексы), тем пе менее фторокомплексы металлов характеризуются большой прочностью и высокими координационными числами, например  [c.356]

    Фториды металлов из приведенной выше группы также применимы в реакциях с хлорпарафинами. В этом случае фтор замещает как хлор, так и водород, причем продуктами реакции являются фторпарафины. На практике более применимы в качестве исходных веществ хлорфторпара-фины, так как они более стабильные реагирующие вещества, чем сам углеводород [23], [c.71]


    Механизм реакции фторидов металлов, несомненно, отличается по своей природе от механизма, по которому реагирует один фтор. Например, для oFg можпо таким образом изобразить последовательность реакции  [c.71]

    Механизм реакции не вполне ясен. Реакция протекает на поверхности анода и, по-видимому, включает стадию образования переходного состояния, в котором органическая молекула присоединена к поверхности анода в окисленном состоянии. Поскольку применяется потенциал ниже того, который необходим для образования фтора, возможно, что в процессе реакции образуется в качестве промежуточного соединения активный фторид металла, который и является фторирующим агентом. Дальнейшим доказательством в пользу этого предположения является наблюдение, что идущий в некоторой степени крекинг углеродной цепи аналогичен крекингу при применении СоГ или АдГа при значительно более высоких температурах. [c.73]

    Обычно методика заключается в нагревании гaлoидaJIKHлa с фторидом металла до получения желаемой степепи фторирования. Для этой цели могут применяться следующие фториды 8ЬГз, ВЬРд, ЗЬС Гу х- -у = 5), НГ, AgF, [IgF, КГ, NaГ, Т1Г, HgO+HГ, РЬОа-ЬНГ, МпОз+НГ. [c.74]

    Фтористый водород сам по себе довольно неэффективный агент для замены галоида, он обычно применяется вместе с HgO, РЬ02 или ЗЬС15, образуя очень активный реагент, состоящий прежде всего из соответствующего фторида металла. Наиболее широко фтористый водород применяется при приготовлении материалов типа фреона в присутствии галоидных [c.74]

    Циклопропан можно фторировать с помощью реакции с безводным фтористым водородом при комнатной или более низкой температуре, при этом получается к-пропплфторид с выходом 80% [15]. При более низких температурах основным продуктом реакции является производное изопропила. Реакция циклопропана с самим фтором или с фторидами металлов ведет к образованию продуктов деструкции, при этом не удается выделить пи одного из фторциклопронапов. Фторированрхе циклобутана почти ие исследовалось. [c.75]

    Процессы изомеризации парафиновых углеводородов можно разделить в зависимости от используемых катализаторов осуществляемые на хлориде алюминия, на алюмоплатиновых катализаторах, промотиро-ванных фтором и хлором, на металлцеолитсодержаших катализаторах, на фторидах металлов V и VI групп периодической системы. [c.3]

    В последние годы во ВНИИнефтехиме проводились исследования по изучению реакции изомеризации парафиновых углеводородов С4-С12 в присутствии сверхкислотных катализаторов - системы фторидов металлов пятой группы периодической системы и фтороводорода, показавшие высокие технико-экономические преимущества этого процесса реакция осуществляется в жидкой фазе при 20-50 °С с высокими выходами изомерных углеводородов [105, 141]. [c.129]

    Степень разложения углерод-углеродной связи увеличивается с ростом молекулярного веса углеводорода. Поэтому в жидкой фазе лучше осуществляется контроль за температурой и получают большие выходы конечных продуктов. Процесс редко применяется, так как существует реальная опасность взрыва. Если углеводороды фторировать фторидами металлов, проходят значительно более узкофракциопные реакции [678—680]. Наиболее устойчивы фториды кобальта и серебра. [c.145]

    По-видимому, фториды металлов, имеющих несколько валентных состояний, вступают в реакции, сходные с теми, в которые вступает 0F3  [c.273]

    По данным [6-161], с другими фторидами металлов (ЫГ, А1Гз) образование фторуглерода идет при более высоких плотностях тока. [c.383]

    ФТОРИДЫ МЕТАЛЛОВ — соедине-ийя фтора с металлами КР, NaP, СаРл, иРз, UPe и др. [c.271]

    Определение электропроводности позволяет найти только сумму подвижности ионов, составляющих электролит. Между тем в зависимости от природы электролита ток может переноситься в большей или меньшей степени катионами или анионами. В некоторых твердых и расплавленных солях ток переносится только ионами одного знака. Так, в твердом Agi при электролизе двигаются только ионы серебра, а в расплавленном Pb l. — только ионы хлора. Такая анионная проводимость характерна для ряда окислов и фторидов металлов, например для твердого раствора СаО в ZtO - В этом растворе часть катионов Zt за- [c.148]

    Фторирование углеводородов можно проводить не только газообразным фтором, но и некоторыми фторсодержащими веществами, легко отдающими атомы фтора, чаще всего это фториды металлов переменной валентности 0F3, Мп 4, AgF . [c.246]

    Обычные окислители, за исключением фтора, фторидов галогенов и ряда высших фторидов металлов, более или менее устойчивы в водных растворах. Поскольку фторсодержащие окислители — это газы или легколетучие жидкости, окисление ими часто производят без растворителя. Действие фтора ка фториды часто приводит к окислительному присоединению. Так, при нагревании эквимолярной смеси и МпРг в токе Рг при 350 °С образуется кирпично-красный комплекс Ь1[Мпр5], т. е. Мп - Мп +. Другие лиганды вытесняются и окисляются. Так, при фторировании [c.405]

    Пироэлектрометаллургия развилась сравнительно не очень давно Химические реакции восстановления осуществляются самым сильным вое становителем — электрическим током на катоде при очень высоких темпе ратурах. В таком техническом электролизе электролитами являются рас плавленные соли и гидраты окислов или растворы металлических окислов в расплавленных солях. Из расплавленных солей и гидроокисей получают щелочные, щелочноземельные и редкоземельные металлы. Из растворов окисей в расплавленных фторидах металлов получают бериллий, магний и алюминий. [c.229]

    В индивидуальном состоянии HafSiFJ не выделена, по силе близка к серной кислоте. Существуют малоустойчивые кристаллогидраты с различным содержанием воды. Соли ее — гексафторосиликаты — термически более стойки, но при нагревании разлагаются на SIF4 и фториды металлов. В октаэдрической структуре нонов [SiFel- кремний находится в состоянии 5/ Й --гнбридизации и его к. ч. 6. Для других галогенов соединения аналогичного состава неизвестны. Здесь существенную роль играет размерный фактор и, как следствие этого, недостаточное перекрытие электронных облаков для об- [c.206]

    Обращает на себя внимание большое значение энерггш Гиббса для фторида, резко отличное от таковых для других галогенидов кальция. Это одна из причин малой растворимости aFj в воде, в то время как остальные галогениды хорошо растворимы. Вообще фториды металлов малорастворимы в воде, за исключением фторидов натрия, калия и некоторых других металлов. В отличие от СаРг фторид серебра хорошо растворим в воде, хотя другие галогениды серебра, как известно, малорастворимы. Таким образом, даже по растворимости фториды в какой-то мере противостоят остальным галогенидам металлов. [c.355]


Смотреть страницы где упоминается термин Фторид металлов: [c.71]    [c.72]    [c.398]    [c.159]    [c.159]    [c.379]    [c.361]    [c.246]    [c.188]    [c.354]    [c.354]    [c.355]    [c.358]   
Химия и технология основного органического и нефтехимического синтеза (1988) -- [ c.151 , c.153 ]




ПОИСК







© 2025 chem21.info Реклама на сайте