Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионообменные смолы селективные

    В Московском институте нефтехимической и газовой промышленности нм. И. М. Губкина разработан процесс алкилирования фенола диизобутиленом с применением в качестве катализатора ионообменной смолы — катионита КУ-2. Катионит имеет ряд преимуществ перед другими катализаторами позволяет осуществить процесс по непрерывной схеме, исключает образование сточных фенольных вод, работает продолжительное время, обладает высокой эффективностью и селективностью. Процесс прост в технологическом оформлении и может быть автоматизирован в промышленных условиях. [c.31]


    Несмотря на ограниченную специфичность, достижимую в настоящее время, существуют высококачественные хелатообразующие ионообменные смолы, селективность которых относительно комплексообразующих ионов металлов настолько различна, что это может быть использовано для специфической адсорбции последних. В этом смысле меняющаяся общая селективность по отношению к комплексообразующим ионам оказывается даже преимуществом, так как специфичность для того или иного иона металла достигается лишь изменением условий реакции. Однако для практического использования необходима лишь одна-единственная смола или весьма ограниченное число подобных смол. Идеальная универсальная хелатная смола , возможно, и не достижима, как и не представляется возможным создать в недалеком будущем специфический адсорбент для каждого отдельного вида ионов металлов. [c.13]

    Для извлечения цезия и рубидия из радиоактивных отходов предлагают также и ионообменные методы. В связи с тем, что сорбцию небольших количеств цезия и рубидия приходится проводить из растворов с большой интенсивностью ионизирующего излучения и высокой концентрацией посторонних солей, к сорбентам предъявляются особые требования в отношении селективности и устойчивости к радиолизу. Испытания значительного числа ионообменных смол, природных и искусственных минеральных гелей, активных углей и других сорбентов показали преимущества использования некоторых природных алюмосиликатов (глаукониты, монтмориллониты) и фосфатов циркония [287, 337, 3381. Оказалось [287], что цезий и рубидий лучше других катионов, даже двух- и трехвалентных, сорбируются на глауконите—железоалюмосили-кате, сцементированном кремневой кислотой и ее солями в зерна различной величины. Глауконитовый песок обычно содержит (вес. %) К2О 3—12 MgO 1—6 FeO и РегОз — по 3—24 и SiOo 43—58 [339]. [c.333]

    Часто ионообменные смолы обладают селективностью по отношению к какому-то одному иону, находящемуся в растворе в смеси с другими ионами того же знака заряда. В аналитической химии селективное действие ионообменных смол используется в практике хроматографического разделения компонентов сложных смесей электролитов [40,41]. [c.54]

    Ведутся работы по ионообменному выделению германия. Германий может сорбироваться как анионитами из слабощелочных растворов (pH 9), так и катионитами из разбавленных солянокислых растворов. Для десорбции германия может применяться либо соляная кислота, либо 5—10%-ный раствор едкого натра [47]. Синтезируются новые виды ионообменных смол, селективные по отношению к германию [45, 46]. Однако эти работы, по-видимому, не вышли из лабораторных масштабов. [c.363]


    За последнее время появился ряд других электродов, в большей или меньшей степени специфичных в отношении тех или иных ионов. При этом используют ионообменные свойства некоторых материалов (малорастворимых осадков, ионообменных смол, жидких ионообменников), изготовляют их в виде мембран, у которых на границе раздела мембрана — исследуемый раствор возникает потенциал в соответствии с селективностью материала [c.117]

    Способность к ионному обмену многих неорганических веществ, главным образом алюмосиликатов, известна давно. Уже в конце прошлого столетия некоторые природные и синтетические алюмосиликаты нашли применение для умягчения воды, очистки сахарного сиропа от калия. Однако известные в то время неорганические иониты (глинистые минералы, синтетические алюмосиликаты — пермутиты) обладали низкой химической устойчивостью и небольшой обменной емкостью, ограничивших их применение. Появление синтетических ионообменных смол привело к длительному забвению неорганических ионитов. Однако развитие в послевоенные годы радиохимии и атомной энергетики потребовало создания радиационно и термически стойких ионообменных материалов, обладающих к тому же высокой селективностью. Этим требованиям не удовлетворяли имевшиеся в то время органические ионообменные смолы, и внимание исследователей разных стран вновь привлекли неорганические соединения. [c.670]

    В силу этих причин селективные свойства неорганических ионитов обычно более многообразны, чем органических ионообменных смол. [c.671]

    Исследование ионообменных смол показало, что в общем случае константа обмена уравнения (XI.6) является функцией степени замещения одного иона другим (состава ионита). Особенно четко эта зависимость проявляется для ионитов с высокой плотностью заряда, т. е. сильно сшитых органических ионитов с высокой обменной емкостью, а также для многих неорганических ионитов. Уравнения (XI. 3) и (XI. 6) применимы в умеренно концентрированных растворах (до 0,1—1 н.) к процессу обмена на ионитах, умеренно селективных относительно поглощаемого иона при более высоких концентрациях появляются отклонения от простых зависимостей. [c.678]

    Каталитические свойства. Определяют, как правило, активность, селективность, стабильность и регенерационные характеристики. Обычно активность катализатора характеризуют так называемым индексом активности. Под ним понимают выход целевого продукта в процентах от теории, достигнутый в результате каталитического превращения стандартного сырья в стандартных условиях на лабораторной установке. Для ионообменных смол активность характеризуется обменной емкостью. В некоторых случаях качество катализаторов характеризуют степенью превращения сырья на этих установках. Иногда сравнивают испытуемый образец катализатора с эталонным, активность которого известна. [c.183]

    А. и. с.-твердые зернистые продукты. Размер зерен, имеющих обычно сферич. форму,-от 0,2 до 2,0 мм. Общая обменная емкость смол составляет 4,0-7,1 мг-экв/г, по анионообменным группам-1,0-1,9 мг-экв/г. С переходными металлами А. и. с. образуют хелаты. Этим обусловлена их высокая избирательность по отношению к сорбируемым ионам и молекулам (см. также Селективные ионообменные смолы). Важное достоинство нек-рых А. и. с.-возможность их регенерации при определенных условиях промывкой водой (при этом гидролизуются ионогенные группы), тогда как для регенерации анионо- и катионообменных смол необходимы р-ры к-т и щелочей. [c.157]

    Способность природных цеолитов обменивать катионы впервые обнаружена около 100 лет назад. Поскольку ионный обмен на цеолитах протекает достаточно легко, их сразу же стали изучать с точки зрения возможности использования для смягчения воды. Однако кристаллические цеолиты не нашли промышленного применения в качестве водосмягчителей. Вначале для этой цели применяли главным образом синтетические аморфные алюмосиликаты, позднее их заменили органические ионообменные смолы.. Тем не менее интерес к цеолитам не пропал, их продолжали изучать, а вскоре начали использовать в различных отраслях промышленности. Так, клиноптилолит — широко распространенный природный цеолит — применяется для селективного выделения радиоактивных ионов из отходов атомной промышленности [2]. [c.544]

    Д.-ингибитор коррозии, селективный поглотитель кислых компонентов (напр., СО2, H,S) из прир. и пром. газов применяют в произ-ве лек. ср-в (новокаина и др.), ионообменных смол, отвердителей эпоксидных смол, текстиль-но-вспомогат. в-в, а также разл. акрилатов, используемых как мономеры для получения присадок к моторным и реактивным топливам, маслам и др. [c.112]

    КОМПЛЕКСООБРАЗУЮЩИЕ ИОНООБМЕННЫЕ СМОЛЫ, то же, что селективные ионообменные смолы. [c.440]

    Методы ионообменной. хро.матографии рассматриваются как эффективные для отделения тория от р. з. э.. образующихся в результате деления ядер [5, 2141], однако конкретное описание их в литературе почти не приводится [617, 1649. Возможность отделения тория от р. з. э. и других элементов путем сорбции на ионообменных смолах обусловлена малым радиусом и большим зарядом ионов тория. Этим объясняется сильная сорбция его катионитами из кислых растворов и трудность десорбции при действии концентрированных соляной или азотной кислот. Так как для вымывания р.з.э. с таких колонок расходуются довольно значительные объемы указанных кислот, сорбцию чаще всего осуществляют из разбавленных растворов, пользуясь для селективного вымывания тория растворами комплексообразующих агентов с определенным значением pH, например лимонной или молочной кислот [5. 93. 208]. [c.120]


    Технология производства МТБЭ чрезвычайно проста. Его получают в одну стадию, присоединяя метиловый спирт к изобутилену (2-метилпропену). При этом не требуется ни высоких температур, ни высоких давлений. Реакцию осуществляют на специальном катализаторе (чаще всего это ионообменные смолы) с высокой селективностью и почти полной конверсией за проход. Более того, в качестве сырья чаще всего используют не чистый изобутилен, а фракцию Сд каталитического крекинга или пиролиза, в которой кроме изобутилена присутствуют и н-бутилены (1- и 2-бутены). Селективность образования МТБЭ такова, что из смеси углеводородов в реакцию вступает только изобутилен. Тем самым синтез МТБЭ одновременно служит и процессом разделения фракции С4. Непрореагировавшие н-бутилены служат наряду с МТБЭ товарной продукцией установки. [c.94]

    Применение ионообменных смол в процессах промышленного производства позволяет непосредственно получать высокопроцентный концентрат урана вследствие высокой селективности извлечения последнего из раствора. [c.315]

    В отличие от ионообменных смол, ионообменные целлюлозы хорошо проницаемы даже для очень больших молекул. Скорость поглощения большая. При поглощении сложных биохимических веществ вероятность их денатурирования Меньше, чем при применении других сорбентов. Кроме того, с биохимической стороны ценной является возможность селективной десорбции поглощенных веществ в очень мягких условиях. [c.133]

    Левандовский и Щепаняк [1486] описали ионообменную смолу, селективную в отношении гафния и циркония. [c.31]

    Левандовский и Щепаняк [148] фиксировали на матрице п-диме-тиламинобензилиденроданин и получили ионообменную смолу, селективную по отношению к ионам благородных металлов. [c.65]

    Ионообменный метод. Реализация ионообменного процесса применительно к извлечению цезия и рубидия из радиоактивных растворов сопряжена с большими трудностями, так как адсорбцию малых количеств цезия и рубидия приходится проводить из растворов с большой интенсивностью ионизирующего излучения и высокой концентрацией посторонних солей. Следовательно, сорбенты должны быть максимально селективны и устойчивы к радиолизу. На практике испытаны ионообменные смолы, природные и синтетические минеральные гели, активные угли. При этом выявлены преимущества природных алюмосиликатов (глаукониты, монтмориллониты) и фосфатов циркония [216, 217]. Оказалось [2161, что цезий и рубидий лучше других катионов сорбируются на глауконите — железоалюмосиликате, сцемен- [c.133]

    Хорошие результаты дает извлечение таллия с помощью ионообменных смол [208, 209]. Особенно избирательным действием по отношению к таллию (I) обладают гидроксилсодержащие катиониты. Оптимум поглощения таллия находится при pH 12, но можно сорбировать и при pH 7—10. Примеси цинка, кадмия, селена и т. д, в этих условиях смолой не сорбируются. Элюируют таллий с катионита (например, со смолы КУ-1) 5%-ной НаЗО . В результате получаются растворы, в которых содержание таллия повышается в 100 и более раз по сравнению с исходным. Метод сорбции селективными катионитами удобен в применении к растворам, полученным при водном выщелачивании пылей он позволяет существенно упростить технологию. [c.355]

    Гидроокись циркония, высушенная не при очень высокой температуре, обладает ионообменными свойствами. В нейтральной и кислой средах она действует как анионообменник, в щелочной среде способна к катионному обмену. Ионообменные свойства гидроокиси усиливаются, если она содержит в структуре анионы многоосновных кислот НзЗ, Н2С2О4, Н2СЮ4, особенно Н3РО,. Иониты на основе гидроокиси и аморфной двуокиси циркония выгодно отличаются от органических ионообменных смол большей емкостью, высокой механической прочностью, устойчивостью к действию кислот, щелочей и радиации, селективностью и тем, что сохраняют ионообменные свойства до 200° [12, 15, 24, 59—63]. [c.284]

    Наряду с кристаллическими мембранами в ИСЭ используются также гетерогенные мембраны (мембраны Пунгора), в которых твердый материал с ионной проводимостью в виде тонкодисперсного порошка помещен в инертную матрицу. Благодаря этому удается получить мембраны из соединений, которые не образуют кристаллы. В качестве активных веществ в таких мембранах применяют самые разнообразные материалы (труднорастворимые соли металлов, оксиды, карбиды, бориды, силициды, хелатные соединения, ионообменные смолы), а в качестве связующего материала - парафин, коллодий, поливинилхлорид, полистирол, полиэтилен, силиконовый каучук и др. Разработаны электроды с мембранами, селективными по отношению к ионам Р", СГ, Вг", Г, 8 , Ag", Ва ",Са ", 80/ , Р04 , а также ртутный электрод с мембраной из Hg8 или Hg8e в эпоксидной матрице. Некоторые из электродов выпускаются промышленностью. Считается, что они менее чувствительны к [c.200]

    Полистирольные ионообменные смолы для ВЭЖХ зернением 10 мкм и менее обладают селективностью и стабильностью, но сетчатая структура их, характеризующаяся расстоянием между узлами сетки 1,5 нм, что значительно меньше размера пор применяемого для адсорбционной хроматографии силикагеля (10 нм), замедляет массо-обмен и, следовательно, значительно снижает эффективность. Применяемые в ВЭЖХ ионообменные смолы представляют собой в основном сополимеры стирола и дивинилбензола. Обычно добавляют 8—12% последнего. Чем больше содержание ди-винилбензола, тем больше жесткость и прочность полимера, выше емкость и, как правило, селективность и тем меньше набухаемость. [c.32]

    Характеризуют И. спец. параметрами, количественно описывающими способность к обмену и селективность при обмене в многокомпонентном р-ре. Важнейшей количеств, характеристикой И. является обменная емкость-суммарное кол-во противоионов, приходящихся на единицу массы или объема И., в мг-экв/г(мл) или ммоль/г(мл). В зависимости от условий определения различают статич. и динамич. емкость. Коэф. распределения Р характеризует способность И. концентрировать извлекаемый компонент Л-, Р-отношение концентрации этого компонента в И. (с ) к его равновесному содержанию в р-ре (с ) Р = j . Для характеристики сродства (избирательности) И. к определенному иону или компоненту р-ра используют предельный коэф. распределения Р при с -> 0. См. также Ионный обмен. Избирательность зависит от структуры И., хим. строения ионогенных групп и от того, в какой форме извлекаемый ион находится в р-ре (напр., от степени его гидратации, размера, степени сольватации ионогенными и функц. группами). Макс. сольватация сорбируемого иона в фазе И. обеспечивает высокое сродство И. к этому иону. При сорбции крупных и сильно гидратир. ионов избирательность может определяться кол-вом и размером пор И., к-рые для синтетич. орг. И. зависят от типа и кол-ва сшивающего агента и инертного р-рителя, использованных при синтезе (см., напр.. Макропористые ионообменные смолы). [c.256]

    По знаку заряда обменивающихся ионов различают катионообменные смолы, анионообменные смолы и амфотерные ионообменные смолы (содержат одновременно кислотные и основные группы) к специфич. группе относят селективные ионообменные смолы, содержащие комплексообра-зующие группы, и окислительно-восстановительные ионообменные смолы, способные к изменению зарядов ионов. Ионогенные группы в И. с. могут быть одного типа (монофункциональные смолы) или разного (полифуикциональные смолы) известны, напр., катионообменные смолы, содержащие группы СООН и 80 зН. В зависимости от способности ионогенных групп к диссоциации различают сильно-, средне- и слабокислотные (или основные) И. с. Два последних типа И. с. ионизируются только соотв. в щелочных и кислых средах (см. табл.). [c.264]

    Различают И. э. с твердыми, жидкими и пленочными мембранами. Твердые мембраны создают на основе металлич. систем типа Ag-Ag l, Hg-Hg2 l2, ионообменных смол, стекол разл. состава, моно- и поликристаллов труднорастворимых в воде солей. Селективность кристаллич. И. э. определяется способностью ионов под действием электрич. поля перемещаться в кристаллич. решетке по дефектам стеклянные И. э. рассматривают как твердый электролит, к-рый может вступать в ионообменное взаимод. с исследуемым р-ром. Стеклянные И. э. обладают высокой чувствительностью к ионам Н" , Ка" , К. , НН и др., что позволяет проводить измерения, напр., pH в диапазоне от [c.265]

    Эти процессы обусловлены градиентом электрического потенциала по толщине мембран. Среди электромембранных методов наибольшее практическое применение нашел электродиализ-раз деж-ние растворов под действием электродвижущей силы, создаваемой в растворе по обе стороны разделяющей его перегородки-мембраны. Эти мембраны, изготовленные из полимерных или неорганических материалов [поры размером (2 н- 8) 10 мкм], проницаемых для любых ионов, служат для отделения электролитов от неэлектролитов. Дрзтой тип мембран, селективных только для катионов или только для анионов, изготовляют из ионообменных смол. Ионообменные мембраны применяют для обессоливания растворов электролитов или фракционирования ионов. [c.336]

    Как известно, селективность органических ионообменных смол возрастает с увеличением числа поперечных сшивок. Следовательно, если считать, что про-грессируемая конденсация фосфата циркония, вызываемая высушиванием при повышенной температуре [c.153]

    Однако другие ионообменные материалы иногда превосходят ионообменные смолы по отдельным показателям, например, циркониевые иониты — по радиационной устойчивости и термостойкости, а также по селективности поглощения щелочных и щелочноземельных металлов, ионообменные целлюлозы и сефадексы — по проницаемости для очень крупных молекул и исключительно мягким условиям сорбции н десорбцин, что особенно ценно в биохимии. [c.8]

    Рабочий диапазон рН-4 14. Ряды селективности — см. раздел 25. Фосфорнокислотные катиониты по сравнению сдругими ионообменными смолами имеют повышенную радиационную устойчивость. [c.29]

    Основные преимущества по сравнению с ионообменными смолами повышенная селективность к некоторым ионам, высокая термостойкость (например, цир-конил-фосфат — до 300 °С), высокая радиационная устойчивость. [c.281]


Смотреть страницы где упоминается термин Ионообменные смолы селективные: [c.292]    [c.87]    [c.223]    [c.45]    [c.227]    [c.520]    [c.33]    [c.332]    [c.120]    [c.310]    [c.705]    [c.70]    [c.322]    [c.97]   
Химический энциклопедический словарь (1983) -- [ c.520 ]




ПОИСК





Смотрите так же термины и статьи:

Ионообменные смолы

Ионообменные смолы селективное действие

Смолы ионообменные селективность



© 2025 chem21.info Реклама на сайте