Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катионообмен

    Для умягчения воды применяют также различные искусственные органические высокомолекулярные вещества, называемые ионообменными смолами. Катионообменные смолы содержат активные группы [c.484]

    Реакции альдегидов и кетонов с ароматическими соединениями имею г много сходства с процессами алкилирования и тоже принадлежа к реакциям электрофильного замещения. Обычными катализаторами являются протонные кислоты (серная, сульфокислоты, хлористый водород, катионообменные смолы), которые переводят карбонильные соединения в положительно заряженный ион, атакующий далее ароматическое ядро через промежуточное образование л- и а-комплексов  [c.549]


    Очистка сточных вод электродиализом основана на разделении под действием электродвижущей силы анионов и катионов. В электродиализаторе имеются анионо- и катионообменные мембраны. Метод широко применяется для опреснения соленых йод. С его помощью очищают сточные воды от соединений фтора и хрома при степени обессоливания 75—80 %, от радиоактивных загрязнений— при снижении активности на 99%. Срок службы мембраны зависит от загрязненности сточных вод взвешенными частицами и составляет 2—5 лет. [c.495]

    Для дегидратации третичного бутилового спирта можно применять катионообменные смолы. В их присутствии дегидратация протекает с высоким выходом при температуре 120—140 " С. [c.348]

    КАТИОНООБМЕННАЯ СМОЛА КУ-2 И ЕЕ ПОДГОТОВКА ДЛЯ ПРИМЕНЕНИЯ В КАТАЛИТИЧЕСКИХ РЕАКЦИЯХ [c.387]

    Катионообменные смолы (катиониты)—гетерополикислоты, состоящие из высокомолекулярной матрицы и катионогенных групп (чаще всего 50зН, СООН, РО3Н2, АзОзНг) и обладающие каталитическими свойствами [17]. Основой в большинстве случаев является полистирольная матрица, которую получают суспензионной полимеризацией с последующим сульфированием серной кислотой (в случае присутствия сульфокислотной группы). В зависимости от условий образуются гелеобразные либо макропористые полимеры, а при использовании полистирола с полипропиленом — формующиеся катализаторы. Наряду с поли-стирольной основой применяют и другие, например, силоксано-вые и фторопластовые. Активность катализатора определяется как свойствами полимерной основы, степенью сульфирования, так и размерами зерна катализатора, степенью его пористости, термической стабильностью и кислотностью.  [c.26]

    АЛКИЛИРОВАНИЕ ФЕНОЛОВ И НЕКОТОРЫХ ИХ ПРОИЗВОДНЫХ ОЛЕФИНАМИ И СПИРТАМИ В ПРИСУТСТВИИ КАТИОНООБМЕННЫХ СМОЛ В КАЧЕСТВЕ КИСЛЫХ КАТАЛИЗАТОРОВ [c.386]

    Электродиализатор, используемый в опытах, представлял собой фильтр-прессную сборку из камер, разделенных ионообменными мембранами. Корпусные рамки, изготовленные из поливинилхлоридных листов толщиной 2 мм, образовывали камеры для прокачки стока и сбора образующегося концентрата. Для разделения камер использовали катионообменные мембраны марки [c.197]

    Цеолитные катализаторы в различных поливалентных катионных (или декатионированных) формах используют для проведения реакций органического и неорганического цикла крекинг, гидрокрекинг, изомеризация, алкилирование, гидрирование, дегидрирование, окисление и т. д. [209—214]. В некоторых случаях они проявляют высокую активность без добавок промоторов, а в других— при нанесении на них активных компонентов. Цеолитные катализаторы термически стабильны, устойчивы по отношению к таким контактным ядам, как сернистые и азотсодержащие соединения, металлы, не вызывают коррозии аппаратуры. Развитая поверхность (до 800 м /г), способность к катионообмену и высокая механическая прочность цеолитов позволяют использовать их в качестве носителей каталитически активной массы.  [c.171]


    Гидролиз а-глицеринмонохлоргидрина под давлением осуществим и с водой при 135 °С и 25 кгс/см [81]. Сильноосновные анионообменные смолы (Амберлит ИРА 400, Дауэкс 2) предлагаются в качестве гидролизующих агентов [82]. В этом случае для гидролиза образовавшегося глицидола необходима дополнительная обработка каталитическими количествами катионообменных смол (Амберлит ИР 112 и ИР-120, Дауэкс 50) при 50 °С. Мягкий гидролиз можно осуществить путем постепенного добавления оснований при повышении температуры [83]. [c.195]

    МО оксидов кремния и алюминия в состав цеолитов входят оксиды Ыа, Са, К. Цеолиты имеют кристаллическую трехмерную каркасную структуру. Простейшей структурной единицей является правильный тетраэдр, в центре которого находится кремний. Структура цеолита напоминает ряд птичьих клеток , связанных друг с другом со всех шести сторон. Каждая клетка открывается в соседнюю клетку отверстием, позволяющим небольшим молекулам пройти внутрь клетки. Благодаря этой особенности структуры, цеолиты способны адсорбировать большие количества веществ с малыми молекулами, при этом молекулы поглощаются не поверхностью полости, а объемом. Цеолиты, кроме того, обладают катионообменными свойствами и являются хорошими катализаторами. Алюмосиликаты широко распространены в природе (шабазит, ферроврит, мордеиит и т. д.), кроме того, их легко получить искусственным путем. Промышленно производятся искусственные цеолиты марок КА, МаА, СаА, ЫаХ, СаХ. Первая часть марки фиксирует название катиона, вторая — тип структуры. Цеолиты типа А относятся к низкокремнистым формам, в них отношение 5 02 А12О3 не превышает 2, а диаметр входного окна составляет 0,3— [c.90]

    Однако 1 процессе восстановления катионообменных форм цеолитов водородом происходит миграция образующихся атомов металла на вторичную пористую структуру I . последующим их агрегированием в крупные кристаллы [2]. Между том изпестно, что каталитические свойства этих контактов во многом зависят ог со( тояния ввсдепного в цеолит металла, его дисперсности и степени гомого то1 ты в цеолите. [c.331]

    Значительные трудности представляет разделение смеси соединений различных РЗЭ. Эти элементы всегда встречаются вместе, и их соединения очень похожи по свойствам. Раньше для разделения их применяли дробную кристаллизацию (основанную на различии в растворимости). Чтобы получить чистые препараты, приходилось проводить тысячи операций по выделению кристаллов. В настоящее время соедннения РЗЭ разделяют, пропуская раствор солей РЗЭ через колонну, заполненную катионообменной смолой (в виде гранул). Данный метод основан на различной способности ионов РЗЭ к комплексообразованию, что связано с различием их ионных радиусов r , уменьшающихся при переходе от La к Lu вследствие лантаноидного сжатия. С уменьшением возрастает прочность комплексов Э+ с HjO, поэтому смола хуже адсорбирует находящие в водном растворе гидратированные ионы тяжелых лантаноидов. Степень разделения можно улучшить добавлением в раствор комплексообразователей. Для разделения РЗЭ используют также экстракцию. [c.603]

    Сначала алкилированием фенола диизобутиленом в присутствии катализатора (бензолсульфокислоты или катионообменной смолы) получают технический алкилфенол, а затем осуществляют конденсацию карбамида с алкилфенолом и формальдегидом в присутствии 0,01 % соляной кислоты при 96—98 °С в течение 8 ч до получения продукта с показателем преломления 2 = 1,5160-ь [c.28]

    Реаьция протекает с выделением тепла, а ее равновесие смещается вправо при повышении давления и снижении температуры. Наи-болег эффективными катализаторами оказались катионообменные смолы прн л 100°С, При этом в качестве сырья можно использовать бутиленовые фракции, освобожденные только от бутадиена, поскэльку в описанных условиях н-бутилены не способны к реакции с метанолом. [c.269]

    И кинетическом отношении кислотное разложение гидропероксидов характеризуется очень высокой скоростью, причем практически полное превращение в присутствии 0,05—1% (масс.) НгЗО,-(в расчете на гидропероксид) при 50—60 °С достигается за 2— 3 мни. Реакция тормозится водой и ускоряется образующимся фенолом, имея первые порядки по кислотному катализатору и гидропероксиду. Вместо сериой кислоты в качестве катализаторов ИСП эП Ывались катионообменные смолы, но сведения об их практп-чес1 ом применении отсутствуют. [c.373]

    V При производстве этил-, пропил- или додецилбензолов редакционную массу алкилирования бензола олефинами в присутствии хлорида алюминия очищают от катализатора водно-щелочной обработкой при температуре 10—20°С. Многократная промывка дает значительный объем сточных вод. Так, при производстве 1 т алкилбензола получается 10—12 сточных вод.- Чтобы уменьшить количество последних и полностью извлечь катализатор из реакционной массы процесса, предложено использовать ионообменные смолы/ КУ-2 в Н+ и натриевой формах, анионит АВ-Г6-ТС в ОН- форме [248], анионообменные смолы АВ-17, катионообменные ткани в Н+форме, анионо-обменные ткани в ОН-, РО= б-формах [249]. [ Эти материалы являются эффективными ионообменными сорбентами при очистке алкилатов от хлоридов алюминия. При времени контакта 10—12 мин, температуре 60—70°С коэффициент. извлечения хлорида алюминия практически составляет 100% (в статичес ких условиях). Экспериментальные данные, полученные в динамических условиях, показали, что максимальная объемная скорость подачи алкилата не должна превышать, 9—10 м /м ионита, так как возможен механический унос последнего. Применение ионообменных тканей и нетканых материалов позволяют в 2—3 раза повысить объемные скорости потока при 100%-ном извлечении. [c.261]


    Цеолиты представляют собой кристаллические пористые алюмосиликаты, отличашциеся строго регулярной структурой пор. а качестве катионов в состав цеолитов входят натрий, калий, кальций и другие металлы [7]. Пористая структура кристаллов цеолита образована жестким трехмерным алюмосиликатным каркасам, состоящим из тетраэдров 5 02 л АЮ4 [ 8]. Отрицательиый заряд кислородных тетраэдров компенсируется катионами щелочных и целочноземельвых металлов, не связанных жестко со структурой и способных обмениваться на другие катионы, в связи с чем цеолиты являются прекрасными катионообменными веществами. [c.172]

    Имеется много патентов на получение катионообменных материалов сульфированием различного углеродистого сырья, главным образом, двумя методами. По одному методу предусматривается получение сульфированного угля действием серной кислоты и газообразного серного ангидрида на лигнин, каменный уголь, антрацит, активированный уголь, кокс и др. По другому обработка угля серной кислотой проводится в присутствии ртутного катализатора, борной кислоты или К2СГ2О7, которые стимулируют реакцию сульфирования [9, с. 112]. [c.140]

    Иониты представляют собой сшитые полимеры, имеющие в молекуле специфические функциональные группы, способные посылать в раствор как катионы, так и анионы. В зависимости от характера генерируемых ионов смолы обладают свойствами либо полимерных твердых кислот (катиониты), либо полимерных твердых оснований (аниониты) [3, 236]. Полимерная смола состоит из каркаса, связанного валентными силами и обладающего определенным зарядом, который компенсируется зарядом ионов противоположного знака (противоионов). Противоионы не закреплены в определенных местах полимерной молекулы. При погружении смолы в раствор противоионы могут перейти в него, а в ионит войдут другие ионы из раствора и примут участие в компенсации заряда каркаса [236]. Например, катионообмен можно охарактери- [c.174]

    После осветления коллактивитом гидролизат нейтрализуют з-вестковым молоком таким образом, чтобы почти полностью. нейтрализовать серную кислоту, оставляя несвязанными органические кислоты. Это достигается нейтрализацией до pH 2,8—3,0 более глубокая нейтрализация приводит к образованию растворимых кальциевых солей органических кислот, резко возрастает в нейтра-лизате содержание ионов Са2+, для удаления которых при дальнейшей очистке ксилозных растворов потребуется дополнительное количество катионообменных смол. Кроме того, при упаривании нейтрализатов удаляется значительное количество летучих органических кислот (уксусной, муравьиной), поэтому необходимо, чтобы эти кислоты при нейтрализации не переводились в их нелетучие кальциевые соли. [c.147]

    Следовательно, рассматриваемое превращение относится к реакциям специфического кислотного катализа, т. е. они ускоряются свободными ионами водорода. Поэтому в качестве катализатора синтеза ДМД могут быть использованы любые вещества, продуцирующие в водном растворе свободные протоны органические и минеральные кислоты, катионообменные смолы, соли сильных кислот и слабых оснований и т. д. Выбор серной кислоты обусловлен ее дещевизной и доступностью, высокой активностью и практическим отсутствием окисляющего действия. Первичным актом реакции Принса является присоединение протона катализирующего вещества к кислородному атому карбонильной группы формальдегида с образованием гидроксиметиленкарбкатиона  [c.369]

    Выполнение работы. Переведение катионообменника в Н-ф о р м у. Для переведения катионооб.менника в Н-форму через колонку пропускают 200 мл 2 М раствора H l (или H2SO4) со скоростью 1—2 капли/с. Затем катионообмен- [c.225]

    З-метилбутандиола-1,3 (МВД) из изобутилена и разбавленного водного раствора формальдегида в присутствии катионообменной смолы КУ-2 X 8. С целью увеличения выхода диола и утилизации побочных продуктов осуществлена их рециркуляция. [c.138]

    Наиболее полный метод — сочетание разделения на ионитах с гель-фильтрованием [257]. Впервые асфальтены разделил на кислые и основные фракции Швейггард [261], используя анионо-и катионообменные смолы (амберлит-27 и амберлит-15). Согласно схеме" 4, было проведено разделение асфальтенов на четыре-кислых (38,6% от исходного вещества), четыре основных (16,6% ) и нейтральную (41,3 7о) фракции. Затем методом гель-фильтрования их делят на фракции, имеющие одинаковые размеры молекул. [c.107]

    Ионообменные смолы получают дву> я методами поликонденсацией нли полимеризацией. В обоих методах процесс синтеза состоит из трех стадий 1) получение линейных полимеров, 2) образование сетчатой структуры из отдельных линейных полимеров с помощью мостнкообразователей, 3) введение в макромолекулы активных (ионогекных) групп. Активные группы могут находиться уже в исходном мономере или их вводят в него перед построением матрицы. В качестве примера синтеза катионообменных поликоп-денсационных смол можно привести поликонденсацию фенола с формальдегидом  [c.165]

    Алкилирование фенолов осуществляют разнообразными продуктами (олефинам и, спиртами, хлорпарафинами, полимер-дистиллятом и др.) в присугствии катализаторов (серной или бен-золсульфокислоты, хлористого алюминия, катионообменной смолы КУ-2 и др.). Этот процесс является головным для получения многофункциональных присадок АзНИИ-ЦИАТИМ-1, ЦИАТИМ-339, БФК, ИНХП-21, ВНИИ НП-370, а также Присадок АСК, МАСК, ионола и др. Высокая химическая активность алкилфенолов в реакциях с серо- и фосфорсодержащими соединениями, окисями и гидроокисями металлов, а также в реакциях [c.314]


Смотреть страницы где упоминается термин Катионообмен: [c.698]    [c.496]    [c.317]    [c.325]    [c.350]    [c.171]    [c.143]    [c.387]    [c.387]    [c.17]    [c.17]    [c.18]    [c.82]    [c.181]    [c.181]    [c.286]    [c.418]    [c.610]    [c.638]    [c.669]    [c.259]    [c.381]    [c.378]    [c.329]   
Ионообменные высокомолекулярные соединения (1960) -- [ c.14 , c.26 ]




ПОИСК





Смотрите так же термины и статьи:

Алкилирование фенолов и некоторых их производных олефинами и спиртами в присутствии катионообменных смол в качестве кислых катализаторов

Бобиков. Расчеты катионообменных экстракционных процессов

Васильев. Структура катионообменных смол, их предполагаемая химическая устойчивость и возможные продукты распада

Выходные кривые для катионообменных колонок

Извлечение висмута катионообменными экстрагентами

Иониты катионообменные

Ионообменные смолы катионообменные

Исследование равновесия с применением катионообменных смол

Карбоксильные катионообменные смолы, определение емкости

Катализ катионообменными смолами

Катализаторы для дегидрирования катионообменные смолы

Катиониты или катионообменные

Катиониты катионообменные смолы

Катиониты см также Иониты, Катионообменные смолы

Катиониты см также Иониты, Катионообменные смолы смолы

Катионообменная емкость

Катионообменная засоленность

Катионообменная карбонатность

Катионообменная полноту вытеснения обменных катионов

Катионообменная смола КУ-2 и ее подготовка для применения в каталитических реакциях

Катионообменная способность

Катионообменная способность Качественные испытания

Катионообменная способность Качественные пробы почв

Катионообменная способность дистиллированной воды

Катионообменная способность почвы

Катионообменная способность реактивов

Катионообменная хроматография

Катионообменное разделение

Катионообменное сродство

Катионообменные волокна

Катионообменные гидрометаллургия

Катионообменные катализаторы

Катионообменные переработка отходов

Катионообменные процессы

Катионообменные процессы водоочистки

Катионообменные процессы получения нитрата натрия

Катионообменные разрушение смол

Катионообменные сильнокислые

Катионообменные слабокислые

Катионообменные смолы со сферическими частицами

Катионообменные цеолиты

Катионообменные экстракционные системы

Катионообменные электролитическая регенерация

Катионообменный метод производства нитратов калия и натри

Катионообменный способ производства нитратов калия, натри

Кривые элюирования из катионообменных колонок

Лигандный обмен на катионообменных смолах

Мембраны катионообменные

Механизм катионообменный

Минеральные примеси воды катионообменная емкость способность

Поливинилспиртовые волокна катионообменные

Равновесие при катионообменной экстракции

Разделение а-аминокислот на катионообменной смоле

Расчет многосекционной катионообменной колонны

Расчет односекционной катионообменной колонны

Свойства катионообменных смол

Синтез катионообменных смол

Синтетические катионообменные полимеры (катиониты)

Смола катионообменные

Смолы алкидные катионообменные

Сорбция антибиотиков группы тетрациклина катионообменными смолами

Тростянская, И. П. Лосев. Катионообменные сорбенты

Фторидные среды, катионообменное разделение

Хелатные и катионообменные системы

Химические волокна катионообменные

Хроматография катионообменная на сефадексе

Ч и к и II. Гетерогенная каталитическая инверсия сахарозы катионообменными смолами

Экстракция катионообменная

Этерификация аминокислот, пептидов катионообменные катализатор

также Электрод с жидкой катионообменная



© 2025 chem21.info Реклама на сайте