Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ атомно-эмиссионный

    Практической целью методов атомной спектроскопии при анализе вещества является качественное, полуколичественное или количественное определение элементного состава анализируемой пробы. Еще 25—30 лет назад эти задачи решались, по существу, лишь одним из методов — атомно-эмиссионным методом спектрального анализа в оптическом диапазоне спектра, В настоящее время достаточно широкое применение получили также методы анализа по атомным спектрам поглощения и флуоресценции в оптическом диапазоне, а также по эмиссионным и флуоресцентным спектрам в рентгеновском диапазоне. Во всех случаях в основе этих методов лежат квантовые переходы валентных или внутренних электронов атома из одного энергетического состояния в другое. [c.53]


    АТОМНЫЙ ЭМИССИОННЫЙ и АБСОРБЦИОННЫЙ СПЕКТРАЛЬНЫЙ АНАЛИЗ [c.637]

    Интенсивность спектральной линии зависит от температуры источника света пропорционально фактору (1—л )ехр(—Е кТ)]. Поэтому в атомно-эмиссионном спектральном анализе принято измерять интенсивность аналитической линии относительно интенсивности некоторой линии сравнения (внутренний стандарт). Чаще всего — это линия, принадлежащая основному компоненту пробы. Иногда компонент, играющий роль внутреннего стандарта, специально вводят в анализируемую пробу. [c.55]

    Спектральный анализ — физический метод определения химического состава н строения вещества по его спектру. Спектром называют упорядоченное по длинам волн электромагнитное излучение. При возбуждении вещества определенной энергией в нем происходят изменения (возбуждение валентных или внутренних электронов, вращение или колебание молекул), которые сопровождаются появлением линий или полос в его спектре. В зависимости от характера возбуждения и процессов внутреннего взаимодействия в веществе различают и методы (принципы) спектрального анализа атомно-эмиссионная, абсорбционная, люминесцентная, комбинационного рассеяния, радио- и рентгеновская спектроскопии и т. д. [c.645]

    АТОМНО-ЭМИССИОННЫЙ СПЕКТРАЛЬНЫЙ АНАЛИЗ [c.53]

    Визуальный атомно-эмиссионный спектральный анализ [c.12]

    Четвертый том справочника содержит сведения по аналитической химии (методы разделения весовой, объемный и газовый анализ потенциометрический, полярографический, колориметрический и другие методы анализа), по атомному эмиссионному и абсорбционному спектральному анализу, спектрам поглощения неорганических и органических соединений. Приводятся также данные о показателях преломления жидкостей и оптической активности органических соединений. [c.2]

    Ознакомиться с важнейшими физическими методами элементного анализа атомно-эмиссионной спектрометрией, атомно-абсорбционной спектрометрией, рентгенофлуоресцентной спектрометрией, активационным анализом и неорганической масс-спектрометрией. [c.6]

    Спектральная чувствительность ФЭУ определяется типом используемого фотокатода и прозрачностью окна, сквозь которое свет попадает на фотокатод. В настоящее время выпускают достаточно широкий ассортимент ФЭУ, в совокупности полностью перекрывающих всю спектральную область, используемую в атомно-эмиссионном анализе (от вакуумного ультрафиолета до ближней инфракрасной области). [c.79]


    При многомерной хроматографии удобно применять детекторы, предусматривающие библиотечный поиск (МС- или ИК-спек-трометры) или элементный анализ (атомно-эмиссионный детектор). Для надежной идентификации детектор должен давать одиночные, хорошо разрешенные пики. Использование сложных алгоритмов хемометрики позволяет с помощью компьютерной обработки получать данные по неразрешенным пикам, однако этот подход имеет свой ограничения. [c.79]

    Спектральный анализ (атомный эмиссионный) 4—987 5—892 Спектрограф 4—990 [c.582]

    СПЕКТРАЛЬНЫЙ АНАЛИЗ (атомный эмиссионный) — метод, основанный на изуче- [c.494]

    Атомный эмиссионный и абсорбционный спектральный анализ Спектры поглощения Показатели преломления н оптическая активность Указатель методов анализа и разделения элементов [c.13]

    Информация о качественном составе образца, которую мы получаем при анализе пробы, находит свое выражение в константах вещества 2/ (например, потенциал полуволн в полярографии, длины волн резонансных линий в атомно-эмиссионной спектроскопии, величина Rf в бумажной хроматографии и т. п.). Во многих методах инструментального анализа измерения проводят в интервале zv— Z2, т. е. от нижней до верхней границы значений, и появляющиеся сигналы записывают (рис. Д.174 и Д.175). При этом часто получают колоколообразную кривую, которая приближенно описывается функцией Лоренца или Гаусса (газовая хроматография, дифференциальный термический анализ, атомная спектроскопия и т. д.). В методах, дающих интегральную S-образную кривую, например в постояннотоковой полярографии, осуществляя дифференцирование при помощи определенной схемы, также можно получить аналогичную колоколообразную кривую. И наоборот, интегрирование колоколообразной кривой приводит к кривой S-образной формы. Координата максимума сигнала колоколообразной кривой или [c.448]

    Эта формула является основным, но не единственным математическим выражением градуировочных кривых, которые строят при проведении количественного атомно-эмиссионного спектрального анализа. При определении высоких содержаний элементов, когда указанные выше предпосылки уже не выполняются и становятся значимыми различные нелинейные эф фекты, математическая модель градуировочной характеристики нуждается в уточнении. Часто достаточно хорошее согласие с опытом можно получить, описывая градуировочную зависимость полиномом вида  [c.56]

    Упрощения в теоретических представлениях о процессах поступления атомов из твердой пробы в плазму приводят к тому, что ни формула (3.10), ни формула (3.11) не отражают хорошо известного в атомно-эмиссионном методе влияния матричных эффектов. Это влияние заключается в том, что во многих случаях значение аналитического сигнала и соответственно результат анализа оказываются зависимыми не только от относительной концентрации определяемого элемента, но и от содержания сопутствующих компонентов, а также от микроструктуры и фазового состава анализируемых материалов. [c.57]

    В практике атомно-эмиссионного спектрального анализа в качестве источников возбуждения спектров применяют пламя, электрические дуги постоянного и переменного тока, низко- и высоковольтную конденсированную искру, низковольтный импульсный разряд, различные формы тлеющего газового разряда я др. В последние годы начинают широко использовать также различные виды высокочастотных разрядов — источник индуктивно-связанной высокочастотной плазмы (ИСП), микроволновой разряд и др. [c.58]

    Все возрастающие требования к скорости и точности анализа обусловили внедрение в практику атомно-эмиссионного спектрального анализа фотоэлектрических способов [c.78]

    Методика применения атомных эмиссионных спектров (спектральный анализ) [c.176]

    Учет изменения содержания элемента сравнения. Как уже указано ранее, общепринятым в атомно-эмиссионном методе является измерение интенсивности аналитической линии относительно интенсивности линии сравнения. Поэтому непосредственным результатом анализа является значение относительного содержания С, т. е. измеренное по отношению к содержанию элемента сравнения Сер. Найденное таким образом значение С совпадает с действительным содержанием Сх только в случае, когда содержание элемента сравнения и в пробах, и в образцах сравнения постоянно и одинаково. [c.88]

    На практике часто встречается и другая, более сложная ситуация, когда атомно-эмиссионным методом определяются не все легирующие элементы, а только нх часть данные по другим легирующим элементам либо известны заранее, либо получены по результатам анализа той же пробы другими методами (например, химическими). [c.89]

    Проведение атомно-эмиссионного спектрального анализа состава веществ и материалов сопровождается выполнением тех или иных математических расчетов. Наибольшая громоздкость расчетов характерна для статистической обработки результатов анализа, которая однако необходима для оценки надежности полученных в процессе анализа сведений. В связи с широким распространением вычислительной техники целесообразно выполнять такие расчеты с помощью ЭВМ. Применение ЭВМ позволяет использовать метод наименьших квадратов и аппарат регрессионного анализа для оценки параметров градуировочных зависимостей. Таким образом, современный химик-аналитик должен не только знать основные положения математической статистики и способы обработки результатов эксперимента, но и уметь переложить выполнение этих задач на вычислительную машину. [c.94]


    На рис. 2.1 показана типичная блок-схема установки для спектрального анализа, состоящая из следующих основных компонентов J — источник света 2 — атомизатор 3 — спектральный прибор 4 — детектор (приемник) излучения 5 — регистрирующее устройство. (В атомно-эмиссионном методе, в котором используются высокотемпературные атомизаторы, они являются одновременно и источниками света (см. рис. 2.1,5).) В атомно-флуоресцентном методе источник света располагается, под углом 90° к оптической осн спектрального прибора (см. рис. 2.1, В). В настоящей главе описаны спектральные приборы, методы освещения щели, а также приемники излучения. [c.17]

Рис. 2.1. Блок-схема устагю-вок для различных методов спектрального анализа А — атомно-абсорбционные методы Б — атомно-эмиссионный метод В — атомно-флуоресцентный метод Рис. 2.1. <a href="/info/50684">Блок-схема</a> устагю-вок для различных <a href="/info/18866">методов спектрального анализа</a> А — <a href="/info/486617">атомно-абсорбционные методы</a> Б — <a href="/info/141029">атомно-эмиссионный метод</a> В — <a href="/info/18529">атомно-флуоресцентный</a> метод
    Качественный анализ. При проведении качественного анализа атомно-эмиссионным пeктpaJ ьным методом можно выделить три вида задач  [c.398]

    Качественный анализ. Атомно-эмиссионный метод позволяет одновременно зарегистрировать множество линий испускания. Поэтому АЭС является многоэлементным методом анализа. Это важнейшее достоинство метода позволяет успешно использовать его для идентификации элементов, содержапщхся в пробе, для качественного анализа. [c.240]

    Лтомно-эмиссионный спектральный анализ. Атомно-эмиссионный спектральный анализ - это анализ элементного состава веществ по спектрам излучения (испускания). Для того чтобы получить атомный спектр, необходимо вещество нафеть до парообразного состояния. При этом происходит возбуждение атомов - переход электронов с одних уровней на другие, испускаются кванты электромагнитного излучения. Если свет, излучаемый возбужденными атомами вещества, направить в [c.520]

    Из инсгрументальных методов определения токсичных микроэлементов в объектах окружающей среды наиболее экспрессным и универсальным является атомно-эмиссионный спектральный анализ (6-8). В сочетании с предварительным концентрированием он применяепгся для определения большого числа элементов (до. 15) Для возбуждения спектров испускания обычно используют дуговой или искровой разряд. При этом атомы и ионы переходет из возбужденного сосгояния в более энергетически низкое и излучают свет, что приводит к появлению характерных для каждого элемента спектральных линий. [c.245]

    Метод атомно-абсорбционной спекфоскопии [9], в основе которого лежит измерение поглощения резонансной линии свободными атомами определяемого элемента, находящимися в невозбужденном состоянии, при прохождении света через пары исследуемого образца, обладает высокой экспрессностью и хорошей точностью Его основное преимущество перед другими методами в высокой селективности, простоте подготовки проб к анализу и возможности определения нескольких элементов из одного раствора по единой методике. Однако при всех достоинствах он уступает по производительности атомно-эмиссионной спектроскопии. При необходимости одновременного определения нескольких элементов 246 [c.246]

    В атомно-эмиссионном, атомно-абсорбционном и рентгено-флуоресцент-ном анализах во многих случаях используют твердые эталоны или стандартные образцы. [c.43]

    Фотографические способы регистрации спектров применяют в атомно-эмиссионном спектральном анализе наиболее широко. Они достаточно просты по технике и общедоступны. Основные достоинства фотографической ре гистрации — документальность анализа, одновременность реги страции и низкие пределы обнаружения многих элементов В автоматизированном варианте этот способ регистрации при обретает новое дополнение —огромную информативность. Ни какими другими методами пока невозможно одновременно оп ределять по 300—500-ти линиям до 70 элементов в одной пробе Фотографический эффект определяется полным числом свето вых квантов, поглощенных эмульсией. Это позволяет создавать фотографическое изображение при малой освещенности за счет увеличения времени экспозиции. Немаловажным достоинством [c.75]

    Фотометрирование спектральных линий и обработка получаемых данных представляют собой один из наиболее трудоем ких этапов фотографического атомно-эмиссионного спектрального анализа, который к тому же часто сопровождается возникновением субъективных ошибок. С развитием вычислительной техники стала возможной автоматизация этого процесса. Основой такой автоматизации является создание автоматизи-рованных микрофотометров с микропроцессорным управлением, снабженных шаговыми двигателями, и математического обеспечения для обработки результатов измерений. Однако работы в этом направлении находятся пока еще на начальном этапе. [c.78]

    Начинать практикум лучше всего с работы на приборах для визуального спектрального анализа, которые дают возможность получить наиболее наглядное представление о характере атомно-эмиссионных спектров. Одновременно ставится задача освоить процедуру,,градуировки отсчетной шкалы стилоскопа по длинам волн и нахождения с ее помощью нужных спектральных линий, а также изучить технику выполнения полуколиче-ственного анализа по характерным, легко запоминающимся группам линий в спектрах тех или иных элементов. Закреплению навыков визуальной оценки относительной интенсивности спектральных линий служит работа 3, где предлагается выполнить стилоскопический анализ повышенной трудности. [c.93]

    Первые работы опубликованы в 19( )4 г. (Гринфилд) и 1965 г. (Вэнд и Фассел), которые показали большие перспективы применения нового источника в практике атомно-эмиссионного анализа. В 70-х годах налаживается серийный выпуск генераторов и спектрометров для нового метода анализа, которьн назван методом ИСИ-спектрометрии (ИСПС), К сожалению, в СССР производство такой а1Н1аратур[>1 не доведено до коммерческого уровня. [c.69]


Смотреть страницы где упоминается термин Анализ атомно-эмиссионный: [c.94]    [c.2]    [c.163]    [c.205]    [c.720]    [c.262]    [c.3]   
Курс аналитической химии Издание 5 (1981) -- [ c.389 ]




ПОИСК





Смотрите так же термины и статьи:

АТОМНО-ЭМИССИОННЫЙ МЕТОД АНАЛИЗА

Анализ атомный

Анализ эмиссионный

Атомно-эмиссионный анализ различных материалов

Атомно-эмиссионный спектральный анализ

Атомно-эмиссионный спектральный анализ качественный

Атомно-эмиссионный спектральный анализ количественный

Атомные эмиссионные спектры, спектры поглощения. Использование в анализе

Визуальный атомно-эмиссионный спектральный анализ

Матвеев, Л. М. Иванцов. Новый универсальный спектральный прибор для аналитических работ, включая эмиссионный и атомно-абсорбционный спектральный анализ геологических объектов

Метод пламенного атомно- н молекулярно-эмиссионного анализа (фотометрия пламени)

Методика применения атомных эмиссионных спектров (спектральный анализ)

Методы атомно-эмиссионного спектрального анализа

Пламенный атомно-эмиссионный анализ

Пламенный атомно-эмиссионный и атомно-абсорбционный анализ

Российские и другие стандарты на методы атомно-эмиссионного спектрального анализа различных веществ и материалов

Спектральный анализ Атомный эмиссионный и абсорбционный спектральный анализ

Справочные данные по аппаратуре для атомно-эмиссионного спектрального анализа

Теоретические основы эмиссионного спектрального анализа. Линейчатые или атомные спектры

Фотографический атомно-эмиссионный спектральный анализ

Эмиссионный атомный анализ вакуумная область спектра

Эмиссионный атомный анализ дуговой разряд

Эмиссионный атомный анализ искровой разряд

Эмиссионный атомный анализ пламенная фотометрия

Эмиссионный атомный анализ тлеющий разряд

Эмиссионный спектральный анализ Атомные спектры

гом эмиссионный



© 2022 chem21.info Реклама на сайте