Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пламенный атомно-эмиссионный анализ

    Чаще всего определение натрия проводят из растворов, используя пламенный способ атомизации в атомно-абсорбционном методе и низкотемпературные пламена в качестве источников возбуждения в атомно-эмиссионном методе анализа. [c.156]

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]


    Пламенная фотометрия — один из методов атомно-эмиссионного спектрального анализа. Этот метод состоит в том, что анализируемый образец переводят в раствор, который затем с помощью распылителя превращается в аэрозоль и подается в пламя горелки. Растворитель испаряется, а элементы, возбуждаясь, излучают спектр. Анализируемая спектральная линия выделяется с помощью прибора — монохроматора или светофильтра, а интенсивность ее свечения измеряется фотоэлементом. Пламя выгодно отличается от электрических источников света тем, что поступающие из баллона газ-топливо и газ-окислитель дают очень стабильное, равномерно горящее пламя. Из-за невысокой температуры в пламени возбуждаются элементы с низкими потенциалами возбуждения в первую очередь щелочные элементы, для определения которых практически нет экспрессных химических методов, а также щелочно-земельные и другие элементы. Всего этим методом определяют более 70 элементов. Использование индукционного высокочастотного разряда и дуговой плазменной горелки плазмотрона позволяет определять элементы с высоким потенциалом ионизации, а также элементы, образующие термостойкие оксиды, для возбуждения которых пламя малопригодно. [c.647]

    Фотометрия пламени, пламенная фотометрия, спектрофото-метрия пламени, пламенно-эмиссионная спектроскопия, спектрометрия пламени — вариант спектрального атомно-эмиссионного анализа, основанный на непосредственном измерении интенсивности спектрального излучения жидкого или твердого анализируемого образца, вводимого в распыленном виде в бесцветное газовое пламя как источник возбуждения. Пламя обладает меньшей энергией возбуждения, чем дуга или искра, поэтому оно возбуждает интенсивную эмиссию только у элементов с низким потенциалом возбуждения (щелочные, щелочноземельные элементы, таллий). Если раствор вводят в пламя с постоянной скоростью, то интенсивность излучения зависит от концентрации определяемого элемента (градуировочный график). Фотометр регистрирует излучение только одной длины волны, он применяется для определения одного элемента. Для одновременного определения нескольких элементов служит спектрофотометрия пламени [13, 57]. [c.14]

    Метод пламенной фотометрии применяется (для открытия и определения химических элементов) в двух вариантах эмиссионная пламенная фотометрия (пламенно-эмиссионный анализ) и абсорбционная пламенная фотометрия (пламенно-абсорбционный, атомно-абсорбционный анализ). Чувствительность метода довольно высока — до 0,001 мкг в 1 мл анализируемого раствора. [c.520]


    Предлагаемое практическое руководство обобщает опыт преподавания физических и физико-химических методов анализа, накопленный на кафедре аналитической химии Московского государственного университета. Руководство включает два больших раздела— спектроскопические и электрохимические методы. В спектроскопические методы включены методы эмиссионной фотометрии пламени, атомно-абсорбционной спектроскопии пламени, абсорбционной молекулярной спектроскопии и люминесцентный в электрохимические — потенциометрический (в том числе с использованием ионоселективных электродов), кулонометрический, полярографический и амперометрический методы. Наряду с перечисленными методами в современных аналитических ла- бораториях используют и другие методы атомно-флуоресцентный анализ, рентгеновские методы, искровую и лазерную масс-спектрометрию, радиоспектроскопические, ядерно-физические и радиохимические методы, однако ограниченное число учебных часов не позволяет включить их в данное руководство. Изучение этих курсов предусмотрено [c.3]

    Атомно-эмиссионная спектрометрия (АЭС) — один из старейших методов, используемых в элементном анализе [8.1-1, 8.1-2]. Первые наблюдения испускания с использованием спиртового пламени были сделаны в начале XIX века Брюстером, Гершелем, Талботом и Фуко Талбот даже предположил, что эмиссионная спектрометрия пламени сможет заменить трудоемкие методы химического анализа . Их результаты послужили основой работы Бунзена и Кирхгофа и могут рассматриваться как действительное начало эмиссионной спектроскопии. [c.10]

    Наряду с эмиссионным анализом широко применяется атомно-адсорбционный спектральный анализ. В отличие от ( эмиссионного анализа он предполагает идентификацию оп- ределяемого в масле элемента не по спектру его излуче.чия, а по спектру поглощения. В атомно-адсорбционном спектрофотометре раствор пробы сжигают в пламени специальной горелки, и каждый химический элемент, присутствующий в пробе, испускает лучистую энергию на определенной длине волны, называемой спектральной резонансной линией. Сквозь пламя горелки пропускают излучение заполненной аргоном или неоном лампы, катод которой изготовлен из того же материала, что и исследуемый элемент. Если этот элемент присутствует в пробе сжигаемого масла, то излучение лампы поглощается. Величина поглощения энергии прямо пропорциональна концентрации этого элемента в пробе масла. На этом [c.216]

    Атомно-эмиссионный анализ. ]. Фотометрия пламени. Анализируемый раствор распыляют в пламени газовой горелки. Под влиянием высокой температуры пламени атомы переходят в возбужденное состояние. Внешние валентные электроны переходят на более высокие, чаще всего соседние с основным, энергетические уровни обратный переход электронов на основной энергетический уровень сопровождается излучением, длина волны которого зависит от того, атомы какого элемента находились в пламени. Интенсивность излучения при определенных условиях пропорциональна количеству атомов элемента в пламени, а длина волны излучения характеризует качественный состав пробы. Метод фотометрии пламени чаще всего применяют для качественного обнаружения и количественного определения легко возбуждающихся щелочных и щелочноземельных металлов. [c.30]

    Пламя было первым источником света для эмиссионного спектрального анализа. Окрашивание пламени при введении пробы в течение ста лет служит для открытия ряда металлов. Но в целом пламя применяли мало, используя, главным образом, электрические источники света. Сравнительно недавно была разработана новая техника работы, которая позволила выявить ряд ценных характеристик пламени как источника света. В настоящее время методы спектрального анализа с использованием пламени широко распространены. Они получили специальное название — пламенная фотометрия. В атомно-абсорбционном анализе пламя используется для испарения вещества и диссоциации его молекул на атомы. [c.80]

    Атомный эмиссионный спектральный анализ особенно широко применяется для открытия и определения металлов в растворах или в твердых образцах. В фармацевтическом анализе он редко используется в обычном варианте (возбуждение в электрическом разряде). Чаще применяется пламенная фотометрия (возбуждение в пламени). [c.519]

    Работа 11. Определение содержания калия и натрия в водных растворах в присутствии марганца методом пламенного атомно-эмиссионного анализа [c.234]

    Методы С. используют для исследования уровней энергии атомов, молекул и образованных из них макроскопич. систем, изучения строения и св-в хим. соединений, для проведения качеств, и количеств, анализа в-в (см. Атомноабсорбционный анализ, Атомно-флуоресцентный анализ. Люминесцентный анализ. Фотометрический анализ. Фотометрия пламени эмиссионная. Фотоэлектронная спектроскопия). [c.394]


    Пользуясь пламенем, можно проводить анализ и по атомным и по молекулярным спектрам. Метод анализа по эмиссионным спектрам, возбуждаемым в пламени, называют пламенной атомно-эмиссионной спектроскопией. [c.96]

    Свои особенности имеет анализ с применением пламен в качестве атомизатора и источника света. Анализ с пламенем развивался несколько обособленно от других методов и поэтому тоже выделился в самостоятельный раздел — пламенный атомно-эмиссионный спектральный анализ, или пламенная фотометрия. Этому разделу спектрального анализа посвящено много пособий и монографий. Заметим, однако, что при помощи пламен анализируется большое число самых различных материалов, поэтому методики пламенного анализа можно найти и в более общих разделах, посвященных анализу определенных материалов. [c.189]

    Пламенная фотометрия — раздел атомно-эмиссионного спектрального анализа. Основой метода является возбуждение в пламени спектра определяемого элемента и непосредственное измерение интенсивности свечения аналитической линии. [c.693]

    Широко распространены в газовой хроматографии также пламенно-ионизационные детекторы, отличающиеся более высокой чувствительностью по сравнению с катарометрами. Иногда используются и специальные детекторы (электронозахватный, микрокулонометрический, инфракрасный и т. п.), высокоселективные по отношению к определенным группам соединений. В конце 80-х годов в практику введены атомно-эмиссионные детекторы, селективные при анализе элементов, например, серосодержащих компонентов нефтяных фракций. [c.121]

    Фотометрия пламени представляет собой один из видов спектрометрического атомно-эмиссионного спектрального анализа Высокая стабильность свечения этого источника позволяет при определенных условиях установить линейную связь непосредственно между отсчетом регистрирующего устройства и содержанием элемента в пробе, введенной в пламя. [c.413]

    Для различных горючих газовых смесей должны применяться соответствующие насадки на сопло горелки. При подаче смеси газов фронт пламени поддерживается над СОП.ЛОМ горелки за счет быстрого истечения газовой смеси через отверстия насадки. Фактически скорость протока газа обычно в 2-3 раза превышает скорость распространения фронта пламени. Наиболее часто в практике атомно-абсорбционного анализа (в отличие от атомно-эмиссионного метода) используются щелевые горелки, позволяющие получать тонкие плоские пламена с большой длиной поглощающего слоя (рис. 14.49). Горелка состоит из двух идентичных заготовок из подходящего материала. При совмещении этих заготовок в верхней части образуется прямоугольная щель длиной до 12 см, шириной менее 1 мм и высотой около 1 см, обеспечивающая ламинарный поток газа. Обе части горелки стягивают винтами. Горелку можно поворачивать относительно оси, меняя тем самым длину поглощающего слоя. [c.834]

    Руководство включает два больших раздела оптические методы и электрохимические методы. В первом разделе рассматриваются методы эмиссионной фотометрии пламени, атомно-абсорбционной спектроскопии пламени, абсорбционной молекулярной спектроскопии и люминесцентные методы. Второй раздел включает потенциометрический, кулонометрическнй, полярографический и амперометрический методы анализа. Единство подхода к теоретическим вопросам внутри каждого из разделов позволяет четко увидеть возможности, ограничения и недостатки каждого метода. По каждому методу даны практические работы, отражающие определенные возможности метода либо в исследовательском, либо в прикладном аспекте описана аппаратура. [c.2]

    В целом атомно-абсорбционный анализ регистрирует поглощение узкой линии излучения атомами, находящимися в невозбужденном состоянии и обладающими узким пиком поглощения. Поэтому наряду с высокой селективностью этот метод практически свободен от эффектов спектрального наложения, столь характерных для эмиссионной спектроскопии. Мало чувствителен метод и к изменениям температуры пламени. [c.368]

    В последующей главе будут изложены методы атомного или элементного анализа, включая атомно-эмиссионную, -абсорбционную и -флуоресцентную пламенную спектрометрию, где также используют ультрафиолетовое или видимое излучение. Свер Х того в специальном разделе будет описано использование электрических разрядов — дуги и искры, применяемых в качестве источников излучения в элементном анализе. [c.628]

    Основным методом при анализе солей щелочных и щелочноземельных элементов является метод пламенного атомно-эмиссионного анализа [157, 172, 175, 249, 250, 252-254, 270, 394, 395, 400, 414, 503, 563-565, 572, 586, 636, 826, 1107, 1136, 1230, 1231]. При определении натрия в солях щелочных и щелочноземельных элементов методами пламенной спектрометрии могут проявляться особенности влияния матриц, заключающиеся в смещении равновесных состояний натрия в пламенах, а также может возрастать роль спектральных влияний при применении метода атомно-эмиссионного анализа. Из-за специфических особенностей матриц в отдельный подраздел выделен анализ солей щелочных и щелочноземельных ivie-таллов. [c.172]

    В отличие от импульсных систем лазеры на красителях, работающие в непрерывном режиме, не обладают описанными выше характеристиками. На рис. 8.22 представлена серия кривых зависимости интенсивности флуоресценции от длины волны лазера при различных концентрациях бария. Излучение лазера в этом случае состояло из двух или трех мод с общей шириной 0,003 нм, т. е. попадало в пределы доплеровской и ударно ущиренной лпнпй поглощения (рис. 8.23). Уровень рассеянного света можно измерить при длинах волн, не совпадающих с резонансной, и затем сде.ггять соответствующие коррекции. График зависимости интенсивностп флуоресценции от концентрации бария показан на рис. 8.24. Предел обнаружения, определенный из этих данных (2 нг/мл), хорошо согласуется с полученным в пламенном атомно-эмиссионном анализе. В пламени Нг — Ог — Аг сигнал флуоресценции, индуцированный лазером мощностью 100 мВт с диаметром пучка 2 мм, в 3000 раз больше, чем сигнал пламенной эмиссии от активной зоны. Сравнение сигнала флуоресценции с сигналом рассеяния излучения лазера от холостой пробы и шумом эмиссии пламени для пламен с низким уровнем фона показано на рис. 8.25. Основной вклад в уровень шума дают флуктуации в рассеянии света лазера от пламени и распыляемого растворителя. [c.574]

    Метод направленной крнсталлизатщи успешно применяют при анализе галогенидов щелочных и щелочно-земельных металлов, которые плавятся ниже 900—1000 С. Например, с использованием вертикальной направленной кристаллизации сверху вниз, при которой распределение микрокомпонентов близко к равновесной вследствие естественного конвективного перемешивания расплава (применяя пламенный атомно-эмиссионный метод определения микропримесей в иодиде натрия), достигнуты следующие пределы обнаружения (%) и — МО К— 310 КЬ— 210 С8— [c.261]

    Проведено сравнение условий определения щелочных элементов, в том числе натрия, методами пламенной атомно-эмиссионной и атом-но-абсорбционной спектрометрии [410]. Использована установка на основе монохроматора УМ-2, источниками света в атомно-абсорбционном анализе служили высокочастотные лампы (безэлектродные шариковые). Изучено влияние различных условий проведения анализа, а также влияние кислот (соляной, серной), органических растворителей (метанол, этанол) разных концентраций. Из результатов эксперимента сделан вывод, что по чувствительности и уровню помех атом-но-абсорбционный метод определения натрия не имеет преимуществ перед атомно-эмиссионньш. При оценке современного состояния атомно-абсорбционного анализа и его роли в современном анализе самых разнообразных объектов отмечается несомненное преимущество атомно-эмиссионного метода определения натрия (калия и лития) перед атомно-абсорбционным [67]. [c.113]

    При анализе ниобата бария—натрия—лития натрий определен методом атомно-эмиссионного анализа после отделения BaSOi [214]. Натрий определяют с помощью пламенного фотометра ФПФ-58 в пламени ацетилен—воздух после следующей подготовки пробы [35]. [c.170]

    Чувствительность. На рис. 9-8 представлены пределы обнаружения многих элементов методами пламенной и непламенной ААС, флуоресценции в пламени, пламенной атомно-эмиссионной спектрометрии и ИСП, систематизированные Вайнфорднером и др. [7]. К этому источнику следует обращаться всякий раз, когда возникает необходимость в точных численных значениях пределов обнаружения многих элементов, а также в ссылках на оригинальные работы. Приведенные в нем данные следует рассматривать только как ориентировочные точные значения зависят от условий анализа, а также от того, что считать пределом обнаружения , поскольку в определении этого понятия в литературных источниках нет единообразия. Из данных, приведенных на рисунке, следует, что в целом метод ИСП чувствительнее пламенных атомно-абсорбционных и атомно-эмиссионных методов, но уступает в этом отношении непламенным ААС. Как показано в работе [8], флуоресценция с использованием ИСП характеризуется тем же пределом обнаружения, что и пламенная флуоресценция. [c.203]

    Атомно-эмиссионный спектральный анализ — это метод анализа по спектрам испускания, которые возникают при испарении и возбуждении пробы в дуге, искре или пламени. Возбужденные атомы и ионы спонтанно, самопроизвольно переходят из возбужденного Ек в более низкие энергетические состояния ,. Этот пооцесс ведет к излучению света с частотой у, г = ( А — Е1)/к и появлению спектральной линии. [c.646]

    ФОТОМЕТРИЯ ПЛАМЕНИ (пламенная фотометрия), оптический метод количеств, элементного анализа по атомным спектрам поглощения (абсорбционная Ф. п.) или испускания (эмиссионная Ф. п.). Для получ. спектров анализируемое в-во переводят в атомный пар а пламени. Об абсорбционной Ф. п. см. Атомно-абсорбционный анализ. Эмиссионную Ф. п. делят на флуоресцентную (см. Атомнофлуоресцентный анализ) и термическую последний метод является разновидностью эмиссионного спектрального анализа и широко используется этому виду Ф. п. и посвящена данная статья. [c.631]

    Влияние анионов на эмиссию и абсорбцию натрия (анионный эффект). Этот вопрос имеет большое практическое значение для правильной подготовки пробы к анализу [32—34, 72, 74—76, 99, 149, 403, 453, 486, 488, 497, 545, 584, 620, 713, 728, 872, 875, 1031, 1208, 1284J. Механизм взаимного влияния при определении элементов атомно-эмиссионным и атомно-абсорбционным методами в пламенах трактуется по-разному с точки зрения физических свойств раствора, особенно при введении органических кислот с позиций изменения условий атомизации за счет образования новых термически более устойчивых соединений натрия при десольватации частиц аэрозоля смещения равновесия атомизации в пламени за счет ионизационных процессов с участием анионов. [c.123]

    Как было отмечено в главе VIII, при определении большой группы элементов, особенно в веществах высокой чистоты, широко используют спектрографические методы — прямые и химико-спектральные. Основными являются методы пламенной спектрометрии, особенно в атомно-эмиссионном варианте (метод фотометрии пламени). Поэтому основные методические сведения, относящиеся к переводу объектов в раствор и подготовке его к анализу, будут приведены ниже именно для зтих методов анализа. [c.155]

    При определении натрия в оксиде никеля в стандартные растворы вводят хлорид никеля (2 мг/мл), используют фильтровый фотометр фирмы К. Цейсс (модель III) и пламя ацетилен—воздух [1108]. Анализ титановых белид и оксида титана проводят после отделения титана отгонкой тетрафторида титана [516] или сорбцией сульфоса-лицилатного комплекса титана анионообменником [1111]. Оксиды цинка, железа, магния, никеля переводят в раствор с помощью НС] [62]. Натрий определяют атомно-эмиссионным методом в пламени ацетилен—воздух с помощью пламенно-фотометрической установки монохроматора УМ-2 с фотоумножителем ФЭУ-38. Основные параметры установки напряжение на ФЭУ 1200 В, расход ацетилена 2 л/мип, воздуха 8 л/мин. Эталонные растворы готовят в интервале концентраций натрия 5-10 —1 10 %. Изучено влияние НС1, К, Са, Fe и Мп на интенсивность резонансных линий натрия. Погрешность определения — г = 0,03 0,05 [79]. [c.170]

    Применение метода атомной абсорбции более эффективно при анализе природных вод, чем методы пламенной фотометрии, эмиссионной спектроскопии, комплексоиометрии и др. [916]. [c.152]

    Анализ растворов за цоследние годы получил значительное развитие в свйзи с широким применением источника высокочастотной индуктивно-связанной плазмы в атомно-эмиссионном спектральном анализе и пламени в атомно-абсорбционной спектрометрии. Поэтому более подробные рекомендации по приготовлению растворов для методов спектрального анализа будут даны в следующем разделе. [c.419]

    Для детектирования в ПА используют самые разнообразные оптические (спектрофотометрия, флуоресценция, пламенная атомноабсорбционная спектрометрия, атомно-эмиссионная спектрометрия с индуктивно связанной плазмой) и электрохимические (амперометрия, иономстрия и инверсионная вольтамперометрия) методы анализа. ПА не накладывает каких-либо принципиальных ограничений на выбор метода детектирования. К идеальному детектору в ПА предъявляются следующие требования быстродействие (время отклика не более 5 с) низкий шум и высокая чувствительность воспроизводимость и стабильность отклика  [c.417]

    Элементный С. а. осуществляют по оптич. и рентгеновским спектрам. Эмиссионный С. а. элементов отличается высокой избирательностью, низкими пределами обнаружения (и 10 % ) и возможностью одновременно определять неск. злементов в образцах небольшой массы. Атзмно-абсорб-ционный анализ и атомно-флуоресцентный анализ примен. гл. обр. для количеств, определений их осн. достоинства — высокая точность, простота эксперимента, экспрес-сность, сравнительно небольшая зависимость результатов определения от общего состава проб эти методы позволяют определять элементы с т делами обнаружения 10 — 10 %. Простой и эффективный метод — фотометрия пламени — особенно часто использ. для определения щел. и щел.-зем. металлов с пределами обнаружения [c.537]


Смотреть страницы где упоминается термин Пламенный атомно-эмиссионный анализ: [c.152]    [c.205]    [c.262]    [c.537]    [c.622]    [c.172]    [c.97]    [c.8]   
Натрий (1986) -- [ c.113 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ атомно-эмиссионный

Анализ атомный

Анализ эмиссионный

гом эмиссионный



© 2025 chem21.info Реклама на сайте