Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спектральный анализ Атомный эмиссионный и абсорбционный спектральный анализ

    Пламя в атомной абсорбционной спектроскопии является наиболее распространенным способом атомизации вещества. В атомно-абсорбционной спектроскопии пламя выполняет ту же роль, что и в пламенной эмиссионной спектроскопии, с той лишь разницей, что в последнем случае пламя является также и средством для возбуждения атомов. Поэтому естественно, что техника пламенной атомизации проб в атомно-абсорбционном спектральном анализе во многом копирует технику эмиссионной фотометрии пламени. [c.192]


    АТОМНЫЙ ЭМИССИОННЫЙ и АБСОРБЦИОННЫЙ СПЕКТРАЛЬНЫЙ АНАЛИЗ [c.637]

    Спектральный анализ — физический метод определения химического состава н строения вещества по его спектру. Спектром называют упорядоченное по длинам волн электромагнитное излучение. При возбуждении вещества определенной энергией в нем происходят изменения (возбуждение валентных или внутренних электронов, вращение или колебание молекул), которые сопровождаются появлением линий или полос в его спектре. В зависимости от характера возбуждения и процессов внутреннего взаимодействия в веществе различают и методы (принципы) спектрального анализа атомно-эмиссионная, абсорбционная, люминесцентная, комбинационного рассеяния, радио- и рентгеновская спектроскопии и т. д. [c.645]

    Атомно-абсорбционный спектральный анализ получил широкое распространение в практике вследствие многих своих достоинств. Важным достоинством атомно-абсорбционного метода является наличие менее жестких требований, чем в эмиссионной спектроскопии, к условиям получения поглощающей плазмы, поскольку аналитический сигнал зависит от числа невозбужденных атомов, которое сравнительно мало меняется при небольших колебаниях температуры. Существенно также, что число линий в спектре в условиях атомно-абсорбционного анализа невелико, поэтому наложения аналитических линий практически не происходит, хотя неселективное поглощение остается значительным. Предел обнаружения с помощью атомно-абсорбционного анализа для многих элементов характеризуется величиной порядка 10" или 10" %. Погрешность определения обычно составляет примерно 5 % и в зависимости от различных условий изменяется в пределах от 3 до 10 %. [c.101]

    Пламя было первым источником света для эмиссионного спектрального анализа. Окрашивание пламени при введении пробы в течение ста лет служит для открытия ряда металлов. Но в целом пламя применяли мало, используя, главным образом, электрические источники света. Сравнительно недавно была разработана новая техника работы, которая позволила выявить ряд ценных характеристик пламени как источника света. В настоящее время методы спектрального анализа с использованием пламени широко распространены. Они получили специальное название — пламенная фотометрия. В атомно-абсорбционном анализе пламя используется для испарения вещества и диссоциации его молекул на атомы. [c.80]


    К оптическим методам анализа относится совокупность методов качественного и количественного анализов по интенсивности инфракрасного (ИК), видимого и ультрафиолетового (УФ) излучения. Это атомно-абсорбционный, эмиссионный спектральный, люминесцентный анализы, турбидиметрия, нефелометрия и фотометрический анализ, под которым обычно понимают методы регистрации поглощения молекулами определяемого компонента излу-чения в ИК, видимой и УФ-областях. [c.131]

    Принципиальное достоинство атомно-абсорбционного спектрального анализа заключается в том, что число параметров, определяющих оптимальные условия измерения, значительно меньше по сравнению с эмиссионными измерениями. Поэтому процедура предварительного поискового этапа разработки методики существенно сокращается, а в некоторых случаях может быть вообще исключена. [c.377]

    Во многих случаях атомно-абсорбционный метод оказался эффективнее эмиссионного спектрального анализа он обеспечивает большую точность определений (при использовании непламенных атомизаторов относительная ошибка снижена до 0,2—0,3%), низкий предел обнаружения здесь проще стандартизация. Метод пригоден и для определения высоких концентраций. Недостатком по сравнению с эмиссионной спектроскопией является то, что пока нельзя осуществлять многоэлементный анализ — элементы определяют последовательно (правда, есть уже способы определения 4—5 элементов). В основном анализируют растворы, хотя разрабатываются и методы анализа порошковых проб. Атомно-абсорб-ционный анализ растворов хорошо сочетается с методами разделения и концентрирования, особенно с экстракцией. [c.70]

    По тем же причинам атомно-абсорбционный спектральный анализ допускает высокую степень стандартизации и унификации как в отношении аппаратуры, так и в отношении условий измерений. Насколько этот момент важен, можно судить по всем известным трудностям, с которыми сталкивается исследователь при воспроизведении в своих лабораторных условиях каких-либо частных эмиссионных методик, разработанных другими лабораториями. Нередко незначительные различия в аппаратуре и даже навыках операторов вынуждают проводить поисковый этап разработки методики заново. Попытки стандартизации методов эмиссионного спектрального анализа (осуществлявшиеся в свое время в США), кроме некоторой упорядоченности в терминологии, ни к каким существенным достижениям не привели, да и вряд ли могут привести ввиду огромного количества факторов (часто неконтролируемых), влияющих на результаты анализа. [c.377]

    Четвертый том справочника содержит сведения по аналитической химии (методы разделения весовой, объемный и газовый анализ потенциометрический, полярографический, колориметрический и другие методы анализа), по атомному эмиссионному и абсорбционному спектральному анализу, спектрам поглощения неорганических и органических соединений. Приводятся также данные о показателях преломления жидкостей и оптической активности органических соединений. [c.2]

    В наше время эмиссионный и атомно-абсорбционный спектральные анализы относятся к числу основных инструментальных методов, получивших широкое распространение. Методы продолжают развиваться и оказывать влияние на развитие аналитической химии и других наук. [c.10]

    Книга состоит из трех разделов, посвященных современным методам эмиссионного спектрографического, пламеннофотометрического и атомно-абсорбционного спектральных анализов. В руководстве описана необходимая аппаратура и приведены примеры применения метода для анализа металлов, сплавов, порошкообразных проб и растворов. В каждом разделе книги описанию лабораторных методик предшествует введение с кратким изложением теоретических основ метода. Учебное пособие не может заменить учебник, а краткий теоретический материал служит лишь введением к работе и облегчает выполнение конкретной аналитической задачи. В конце каждого раздела книги приводятся вопросы и задачи для закрепления изученного материала и указана основная литература. [c.3]

    Проведенные исследования показали, что результаты анализа химических реактивов, проводимого атомно-абсорбционным методом, практически не зависят от состава анализируемых образцов и, следовательно, стандартные растворы, необходимые для калибровки используемой аппаратуры, могут готовиться на чистых растворителях. Независимость результатов анализа от химического состава пробы является важным преимуществом атомно-абсорбционных методов перед эмиссионными методами спектрального анализа, поскольку в последних получение правильных результатов в большинстве случаев возможно лишь при использовании стандартов, приготовленных на образцах того же состава, спектрально чистых по определяемому элементу. [c.148]

    Научные интересы Я. Д. Райхбаума в последние годы были связаны с проблемой формирования аналитических сигналов при эмиссионном и атомно-абсорбционном спектральном анализах, с управлением результатами измерений концентраций определяемых элементов за счет повышения различными приемами информативности сигнала. Я. Д. Райхбаум стоял у истоков развития нового научного направ.чения — метрологии анализа веществ и материалов. [c.4]


    Группа методов электронной УФ спектроскопии охватывает оптические спектры не только в ультрафиолетовой (УФ), но и в видимой (ВИ) и самой ближней ИК областях, связанные с переходами между различными электронными состояниями атомов и молекул. Электронные переходы атомов и связанные с ними спектры в указанных областях являются основой атомного эмиссионного и абсорбционного спектрального анализа. Высокотемпературный нагрев вещества, например, в вольтовой дуге или искровом разряде, как это делается при эмиссионном спектральном анализе, переводит образец в парообразное, обычно атомарное состояние, причем атомы химических элементов, входящих в состав вещества, возбуждаются. Излучение, возникающее при переходах атомов в основное электронное состояние, и дает линейчатый спектр, используемый для качественного и количественного элементного анализа, который, как и вся группа связанных с ним спектральных методов, здесь рассматриваться не будет. [c.294]

    Не уменьшается и количество методических исследований. Вместе с тем наблюдается определенная тенденция к стабилизации характера аналитических задач, решаемых приемами абсорбционной спектроскопии с использованием как пламен, так и электротермических атомизаторов. В известной мере это связано с появлением-(и с накоплением) опыта использования эмиссионных методов спектрального анализа, основанных на применении индукционного высокочастотного разряда (1СР-плазмы), который во многом, как уже отмечалось, сходен с атомно-абсорбционным. [c.218]

    Велика роль спектроскопии в астрофизике. При этом, если при изучении звезд основную роль играет атомный эмиссионный и абсорбционный анализ, то для изучения свойств и состава атмосферы планет, проблем геоботаники, необходимо использовать методы молекулярного спектрального анализа. [c.112]

    Атомный эмиссионный и абсорбционный спектральный анализ Спектры поглощения Показатели преломления н оптическая активность Указатель методов анализа и разделения элементов [c.13]

    Больших величин могут достигать приборные ошибки в ин- струментальных методах, оснащенных сложной аппаратурой (эмиссионный и атомно-абсорбционный спектральный анализы, радиоактивациоиный анализ, газохроматографический анализ и др.). Причина состоит в том, что из мерение количества частиц определенного сорта многократно опосредовано через целый ряд процессов— образования, выделения, усиления и преобразования аналитического сигнала. Техническая реализация каждого из этих процессов требует стабилыности целого ряда рабочих характеристик и неизменного во времени режима работы отдельных узлов прибора и, естественно, сопровождается помехами разного рода. [c.27]

    По технике эксперимента и аппаратуре к методам эмиссионного спектрального анализа близка атомно-абсорбционная спектрофотометрия, однако физическим явлением, лежащим в ее основе, является не излучение, а поглощение резонансного электромагнитного излучения в видимом или ультрафиолетовом диапазоне атомами элементов, находящимися в основном (невозбужденном) состоянии. [c.8]

Рис. 2.1. Блок-схема устагю-вок для различных методов спектрального анализа А — атомно-абсорбционные методы Б — атомно-эмиссионный метод В — атомно-флуоресцентный метод Рис. 2.1. <a href="/info/50684">Блок-схема</a> устагю-вок для различных <a href="/info/18866">методов спектрального анализа</a> А — <a href="/info/486617">атомно-абсорбционные методы</a> Б — <a href="/info/141029">атомно-эмиссионный метод</a> В — <a href="/info/18529">атомно-флуоресцентный</a> метод
    Характерной особенностью физических методов анализа и аналитических процессов, лежащих в их основе, является высокая разрешающая способность , которая проявляется в дискретности характеристических сигналов (см рис. 4,5), регистрируемых в виде линейных спектров или острых пиков. Эта особенность присуща большинству ядерно-физических (ЯМР, активационный анализ) методов, а также методам рентгеновской, атомно-эмиссионной и абсорбционной спектроскопии. Причина высокой разрешающей способности этих методов — в относительно высоких значениях характеристических квантов энергии, сопровождающих переход из возбужденного состояния в основное (или наоборот) в процессе ядерных превращений и при переходах электронов на близких к ядру уровнях. Следствием высокой разрешающей способности физических методов является их высокая специфичность, проявляющаяся в почти полном отсутствии эффектов наложения сигналов элементов друг нз/друга. Однако нередко на основные сигналы накладываются сигналы сопутствующих процессов. Так, хотя спектральная линия атомного поглощения элемента характеризуется шириной не выше 0,1 нм, на нее часто накладывается спектр молекулярного поглощения соединений, образуемых элементом основы (матрицы) в условиях атомизации. [c.15]

    Оптические методы анализа основаны на измерении характе]5истик оптических свойств вещества (испускание, поглощение, рассеивание, отражение, преломление, дифракция, интерференция, поляризация света), проявляющихся при его взаимодействии с элекгромагнитшш излучением. По характеру взаимодействия электромагнитного излуч(шия с веществом оптические методы анализа обычно подразделяют на эмиссионный спектральный, атомно-абсорбционный, молекулярный абсорбционный спектральный (спектрофотометрия, фотоэлектроколориметрия), люминесцентный, нефелометрический, турбодиметрический, рефрактометрический, интерферометрическиг поляриметрический анализ, а также спектральный анализ на основе спектров комбинационного рассеяния (раман-эффект) и некоторые другие методы, также использующие взаимодействие электромагнитного поля с веществом — ядерный магнитный резонанс (ЯМР), электронный парамагнитный резонанс (ЭПР), ядерная гамма-резонансная спектроскопия (эффект Мессбауэра) и т. д. [c.516]

    Определение содержания отдельных компонентов во многих методах химического анализа опосредовано через применение разного рода стандартных образцов или эталонов . Таковы методы фотометрического, эмиссионного, спектрального, атомно-абсорбционного, газохроматографического анализов, полярографические, амперометрические, кондуктометрические, радиохимические и многие другие методы. В титриметрических методах получили распространение фиксаналы, которые по сути дела являются стандартами для приготовления рабочих растворов. [c.51]

    Испытания эффективности и качества протекторов ограничиваются в основном аналитическим контролем химического состава сплава, проверкой качества и наличия покрытия на держателе, определением достаточности сцепления между держателем (креплением) и протекторным материалом и контролем соблюдения заданной массы и размеров протектора. Испытания магниевых и цинковых протекторов регламентируются нормативными документами [6, 7, 22, 28]. Аналогичных нормативов по алюминиевым протекторам не имеется. Кроме того, указываются и минимальные значения стационарного потенциала [ 16]. Нормативы по химическому составу обычно представляют собой минимальные требования, которые обычно превышаются у всех сплавов, имеющихся на рынке. К тому же регламентированные в этих документах способы мокрого химического анализа в техническом отношении за прошедшее время устарели. Протекторные снлавы в настоящее время более целесообразно исследовать методами эмиссионного спектрального анализа или атомной абсорбционной спектрометрии (по спектрам поглощения). [c.196]

    Оптические, основанные на использовании оптических свойств исследуемых соединений визуальная колориметрия, фотоколориметрия, спектрофотометрия (абсорбционный спектральный анализ) турбодиметрия, нефелометрия эмиссионный спектральный анализ люминесцентный анализ пламенная фотометрия и атомно-абсорбционная спек- [c.213]

    В конференции участвовало свыше 300 специалистов в области эмиссионного и атомно-абсорбционного спектрального анализа, среди них ведущие учёные — Анатолий Константинович Русанов, Всеволод Васильевич Недлер, Александр Натанович Зайдель, Аркадий Романович Стриганов и другие. Благодаря их работата созданы новые направления в различных областях науки й техники. Инициатор проведения конференции —крупный ученый и научный организатор Лев Викторович Липис, активная творческая работа которого в значительной мере способствовала широкому внедрению спектрального анализа в практику. [c.3]

    Один из наиболее существенных недостатков метода атомной абсорбции, как, впрочем, и других химических методов, по сравнению с методами эмиссионного спектрального анализа — это необходимость последовательного определения отдельных элементов. Поэтому в тех случаях, когда сравнительно просто получить градуировочную характеристику, не опасаясь внесения систематической погрешности, выгоднее использовать квантометрические методы (оптические или рентгено-флуоресцентные), например при массовом анализе многокомпонентных сплавов стандартного состава и т. п. При необходимости одновременного определения многих элементов, когда не требуется высокая точность анализа, например при анализе высокочистых продуктов, часто даже фотографический вариант эмиссионного спектрального анализа оказывается предпочтительнее атомно-абсорбционного и других химических методов. [c.9]

    Для сравнения реальных возможностей абсорбционного и эмиссионного вариантов спектрального анализа весьма интересно обсудить опыт применения ВЧ- и СВЧ-разрядов. В работах [18, 19] было показано, что при использовании СВЧ-разряда влияние состава пробы на результат определений сказывается примерно в одинаковой степени. В обоих вариантах анализа этот же факт отмечается авторами больщинства работ, в которых для аналитических целей применяют индукционный ВЧ-разряд, например, в работах [20, 21]. В работе [22] автором совместно с Ю. С. Сукачем и Л. Н. Филимоновым было показано, что воспроизводимость и правильность эмиссионного анализа при использовании особой формы индукционного ВЧ-разряда с энергетически независимой от химического состава плазмой сопоставимы с результатами атомно-абсорбционного анализа. Однако оказалось, что предложенным методом [22] можно определять элементы, соединения которых в пламенах не диссоциируют (или диссоциируют незначительно), например рений, ниобий, тантал, церий, цирконий, некоторые редкоземельные элементы и т. п. Таким образом, и в этом случае решающим фактором, определяющим в конечном итоге ценность аналитического метода, оказалась возможность обеспечения стабильности и энергетической независимости свойств источника света или поглощающего слоя от химического состава плазмы. [c.45]

    При определении тория методом спектрального анализа чаще всего используют линии 2832,32 и 2837,30 A. Чувствительность спектрального определения тория 0,1—0,01%, точность 10—15% [137, 138]. Однако определение тория лучше проводить по рентгеновскому спектру, который проще оптического. Линии его распределяются в пределах небольпюго числа К-, L-, М-серий в соответствии с конечными уровнями излучающих электронов. Для определения тория используют обычно линии L-серии, либо сильную пару линий М-серии—а, 4130 А и 4143 A. Максимальная чувствительность эмиссионного рентгеноспектрального анализа не превышает 0,05%. При определении очень малых количеств тория предварительно производят обогащение исследуемых образцов химическими методами. Абсорбционный анализ пригоден для обнаружения тория в материалах, основу которых составляют элементы с низкими атомными номерами. Теоретические основы рентгеноспектрального анализа описаны в [139, 140]. [c.376]

    Не все перечисленные методы получили широкое распространение в качественном анализе. Так, в фарммкопейном анализе применяют эмиссионный спектральный (сравнительно редко), атомно-абсорбционный, молекулярный абсорбционный спекфальный, люминесцентньн г, рефрактометрический, поляриметрический анализ, спектроскопию ЯМР м ЭПР (относительно редко) другие оптические методы используются шачи-тельно реже. [c.516]

    В атомно-абсорбционном анализе анализируемое вещество под действием тепловой энергии разлагается на атомы. Этот процесс называют атомиза-цией, т. е. переведением вещества в парообразное состояние, при котором определяемые элементы находятся в виде свободных атомов, способных к поглощению света. Излучение и поглощение света под воздействием внешней энергии связаны с процессами перехода атомов из одного стационарного состояния (/, ,) в другое (к, Возбуждаясь, атомы переходят в стациотарное состояние к с энергией и затем, возвращаясь в исходное основное (невозбужденное) состояние I с энергией испускают свет с частотой /1.. Излучательные переходы осуществляются спонтанно без какого-либо внешнего воздействия. Повышение температуры излучающего облака в значительной степени сказывается на увеличении в нем концентрации возбужденных атомов, на интенсивности спектральных линий и, следовательно, на чувствительности атомно-эмиссионного спектрального анализа. [c.698]

    ФОТОМЕТРИЯ ПЛАМЕНИ (пламенная фотометрия), оптический метод количеств, элементного анализа по атомным спектрам поглощения (абсорбционная Ф. п.) или испускания (эмиссионная Ф. п.). Для получ. спектров анализируемое в-во переводят в атомный пар а пламени. Об абсорбционной Ф. п. см. Атомно-абсорбционный анализ. Эмиссионную Ф. п. делят на флуоресцентную (см. Атомнофлуоресцентный анализ) и термическую последний метод является разновидностью эмиссионного спектрального анализа и широко используется этому виду Ф. п. и посвящена данная статья. [c.631]

    Определение. А. обнаруживают по образованию окрашенных соед. с ализарином, алюминоном морином или с помощью эмиссионного спектрального анализа. Гравиме-трич. методы определения основаны на выделении А. в виде гидроксида, бензоата, гидроксихинолината и послед, прокаливании их при 1200°С до AI2O3, к-рый взвешивают. При титриметрич, определении А. при pH 4,5 связывают в комплекс динатриевой солью этилендиаминтетрауксусной к-ты, избыток к-рой оттитровывают р-ром соли Zn, Для количеств, определения А. используют также фотометрич. (с помощью 8-гидроксихинолина, алюминона, эриохром-цианина, хромазурола S) и атомно-абсорбционный (с использованием резонансного излучения с длиной волны 309,3 нм) методь анализа. [c.117]

    В геохим. методах поисков (Г. м. п.) оценивают концентрации ряда характерных для данного месторождения элементов-индикаторов, аномальные концентрации к-рых могут незначительно отличаться от геохим. фона. При этом используют высокочувствит. методы анализа, позволяющие определять одновременно неск. элементов, в первую очередь эмиссионный спектральный анализ, а также атомно-абсорбционный, гамма-спектральный, рентгеноспектральный и др. Их экспрессность и низкая себестоимость обеспечивают высокую эффективность Г. м. п. По результатам анализа составляются геохим. карты и графики содержаний элементов-индикаторов, к-рые интерпретируются с учетом геол., геофиз. и др. данных. При этом большое значение имеет создание автоматизир. информационных поисковых систем (АИПС) с пакетами спец. программ для сбора, хранения, обработки и картографирования информации на базе ЭВМ. [c.520]

    В атомно-абсорбционных Ж. а. измеряют изменение оптич. плотности атомного пара при поглощении атомами определяемого элемента светового излучения в диапазоне 0,34),8 мкм. Область применения элементный анализ разных в-в, биол. жидкостей, электролитов, прир. и сточных вод и т. д. Число определяемых элементов достигает почти 70, предел обнаружения 10 -10 % (см. также А томпо-абсорбциониьш ана.шз). В атомно-эмиссионных Ж. а. эле.ментный состав жидкостей устанавливают по атомным спектрам испускания. Число определяемых элементов превышает 40, предел обнаружения 10" -10 % (см. также Спектральный анализ). [c.150]

    Хим. методы К. а. имеют практич. значение при необходимости обнаружения только неск. элементов. Для многоэлементного К. а. применяют физ.-хим. методы, такие как хроматография, электрохим. методы, в осн. полярография, и др. и физические методы, напр, атомно-эмиссионную спектрометрию (см. Спектральный анализ) (предел обнаружения 1 мкг на 1 г твердой пробы или 1 мл р-ра), атомно-абсорбционный анализ (предел обнаружения порядка пикограммов), рентгеноэмиссионный и рентгенофлуоресцентный анализ (см. Рентгеновская спектроскопия) (миним. анализируемый объем 1 мкм , предел обнаружения 10 10 % по массе). [c.360]


Смотреть страницы где упоминается термин Спектральный анализ Атомный эмиссионный и абсорбционный спектральный анализ: [c.8]    [c.42]    [c.168]    [c.738]    [c.60]    [c.537]    [c.324]    [c.394]    [c.172]   
Смотреть главы в:

Справочник химика. т.4 -> Спектральный анализ Атомный эмиссионный и абсорбционный спектральный анализ

Справочник химика Том 4 Издание 2 1965 -> Спектральный анализ Атомный эмиссионный и абсорбционный спектральный анализ

Справочник химика Изд.2 Том 4 -> Спектральный анализ Атомный эмиссионный и абсорбционный спектральный анализ




ПОИСК





Смотрите так же термины и статьи:

Анализ абсорбционный спектральный

Анализ атомно-эмиссионный

Анализ атомный

Анализ эмиссионный

Анализ эмиссионный спектральный

Атомно-абсорбционный анализ

Атомно-абсорбционный спектральный анализ

Атомно-эмиссионный спектральный анализ

Спектральный анализ

Спектральный эмиссионный

гом эмиссионный



© 2025 chem21.info Реклама на сайте