Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сульфат III группы

    Удобряя землю калием, фосфором или азотом, в нее одновременно вносили и серу, причем в единственно усвояемой растениями форме — в виде сульфатов. Группу 804 содержат и суперфосфат, и сульфат аммония, и сульфат калия. Еще одним источником усвояемой серы была атмосфера сера всегда есть в угле, и при сжигании последнего в атмосфере появляется сернистый газ ЗОг. Вместе с осадками он выпадает на землю и в почве окисляется. В общем серы хватало. [c.260]


    Полосы деформационных колебаний воды постоянны для всех двойных сульфатов они расположены в области 1650—1690 см . Валентные колебания ОН-групп молекул воды в спектрах имеют широкие полосы (3200 см ), свидетельствующие о сильной деформации О—Н-связи в структуре сульфатов. Это позволяет допустить наличие воды во внутренней сфере комплекса [И]. Наличие одной полосы в области 980 см" и трех полос — 1050, 1170 и 1200 см" указывает на наличие мостиковой сульфат-группы в структуре двойных сульфатов [12]. [c.9]

    Известны сульфаты и бисульфаты почти всех электроположительных элементов. Большинство из них растворимо в воде, за исключением сульфатов группы Са—Ra и нескольких других двухзарядных катионов. [c.405]

    Далее Грэхем перешел к изучению диффузии растворенных веществ. Он обнаружил, что растворы веществ, подобных соли, сахару или сульфату меди, проходят через разделяющую перегородку из пергаментной бумаги (имеющей, как он предполагал, микроскопические поры). В то же время растворы таких соединений, как гуммиарабик, животный клей и желатина, пройти через разделяющую перегородку не могут — очевидно, молекулы соединений последней группы для этого слишком велики. [c.128]

    Если электрон присоединится к атому хлора, то при этом получится атом хлора, несущий единичный отрицательный заряд, т. е. образуется ион хлора (хлорид-ион). Если к группе атомов, состоящей из атома серы и четырех атомов кислорода, присоединятся два электрона, то в результате получится сульфат-ион, несущий двойной отрицательный заряд, и т. д. Таким образом можно легко объяснить причины образования всех отрицательно заряженных ионов. [c.149]

    Висмут, медь, цинк образуют вторую, промежуточную группу. Для нее характерно металлическое перенапряжение порядка нескольких десятков милливольт, образование более тонких осадков и меньшие, чем у металлов предыдуш,ей группы, токи обмена. Для меди, например, ток обмена в контакте с раствором сульфата меди близок к 10- А-м 2. [c.459]

    В нем хорошо растворяются вода, фториды, сульфаты и нитраты s-элементов I группы, несколько хуже аналогичные соединения s-элементов II группы. При этом растворенные веш.ества, отнимая от молекул НР протоны, увеличивают концентрацию отрицательных ионов (HFj), т. е. ведут себя как основания. Например  [c.284]

    Ксилолы значительно легче сульфируются, чем толуол из трех изомеров наиболее трудно сульфируется п-изомер, потому что сульфогруппа с большим трудом становится в то положение в кольце, по соседству с которым уже находится другая группа. Присутствие сульфата ртути (2 и 10%) индуцирует образование 3-сульфокислоты (8 и 22% соответственно) из о-ксилола, а в отсутствии солей ртути образуется 4-сульфокислота [60]. Ксилолы можно сульфировать почти теми же методами, как и толуол. [c.533]


    Носитель пропитывают соединением щелочноземельного металла (гидроокись) нитратом. формиатом Ва, Са, Сг и соединением металла Ре-группы (ацетат, нитрат, формиат, хлорид, сульфат, фторид, бромид N1. СО. Ре), сушат при температуре 95—205° С и прокаливают при 590—760° С [c.79]

    В термических реакциях наблюдается движение двойной связи [455—458], а в разветвленных структурах может происходить некоторое перемещение метильных групп, уже присутствующих в системе, но новые разветвленные структуры не образуются. То же можно сказать и о мягких катализаторах, таких как алюминий нри 400—450° С [459—461] и сульфат алюминия при 270—290° С [462—464]. Однако катализаторы, обладающие кислотными свойствами, вызывают перемещение метильных групп или разветвление цепи. Это в особенности справедливо для тех случаев, когда олефины проходят через окисленный алюминий при 300° С-370° С [465, 466, 462, 461], глины при 290° С [467], кремний-алюминиевые катализаторы крекинга при 400—600° С [468, 469] и кислоты, такие как фосфорная, при 200—350° С [470]. Сильные кислоты, такие как серная кислота и хлористый алюминий, являются эффективными агентами изомеризации при комнатной температуре, но их применение сопровождает значительный крекинг углеводородов.  [c.120]

    В зависимости от природы гидрофильных групп ПАВ можно разбить на следующие классы анионоактивные, катионоактивные, амфотерные и неионные, каждый из которых в соответствии с химическим составом гидрофильной (карбоксильные группы, сульфаты, сульфонаты) и гидрофобной части (алкил, алкиларил и т. д.) может быть разбит на соответствующие группы. [c.592]

    Если центральный атом комплексного иона окружен несколькими равноудаленными от него атомами, число окружающих атомов называется координационным числом центрального атома. Координационное число зависит главным образом от размеров центрального атома и окружающих его атомов или групп. Вокруг атома азота в нитрат-ионе, КОз, могут расположиться три атома кислорода, поэтому координационное число азота по отношению к кислороду равно 3. Атом серы больше атома азота, поэтому в сульфат-ионе, ЗО , содержится на один атом кислорода больше, чем в нитрат-ионе. Следовательно, координационное число серы по отношению к кислороду равно 4. [c.34]

    Описанная технология является типичной-для всей группы монолитных -гелеобразных катализаторов. Производство сферического силикагеля состоит из тех же стадий (за исключением активации), только в качестве реагирующих растворов применяют не жидкое стекло и сульфат алюминия, а жидкое стекло и серную кислоту. [c.179]

    Это свидетельствует о том, что уже при комнатной температуре происходит взаимодействие части молекул сероводорода с поверхностными сульфатными группами с образованием воды и, по-видимому, элементной серы. Другая часть молекул сероводорода взаимодействует с поверхностным или решеточным кислородом с образованием сульфат-сульфитных комплексов (1168 и 1308 см ). [c.119]

    Таким образом, повышение температуры приводит к постепенному превращению одного типа поверхностных сульфат-сульфитных комплексов в другой. Небольшое смещение частот колебаний может быть объяснено искажением структуры образующихся сульфатов. Следует отметить, что образование поверхностных сульфатных комплексов и органических сульфатов происходит с возмущением обоих типов гидроксильных групп поверхности катализатора (3637 и 3730 см ). [c.120]

    Катализаторы крекинга делятся на две группы природные и синтетические. Первыми природными катализаторами были различным образом обработанные природные глины. Глины типа флоридина обладают достаточной активностью даже без предварительной обработки и нуждаются лишь в формовании в частицы определенных размеров и формы. В отличие от этих глин, бентонитовые требуют предварительной обработки — активации. Активация осуществляется кислотами или некоторыми солями (сульфат алюминия, хлорид аммония), В результате такой обработки с поверхности катализатора удаляются избыточные катионы металлов, развивается пористая структура. Последующее прокаливание при 450—500° С приводит к удалению гигроскопической и частично структурной воды и дальнейшей полимеризации алюмосиликата. [c.230]

    Окислы железа, алюминия и марганца (в сумме), не более. . Железо в пересчете на РбгОз, не более. . Сульфаты в пересчете на ЗО , не более. Кальций, не более. . Тяжелые металлы сероводородной группы, [c.258]

    SNa SO -I2H2O. По растворимости двойные сульфаты последнего типа можно подразделить примерно на два класса на группу церия (La—Eu) и группу иттрия (Gd—Lu и Y), Сульфаты группы церия лишь умеренно растворимы в сульфате натрия, тогда как сульфаты группы иттрия растворимы в нем очень хорошо. Таким образом, все элементы группы лантанидов можно довольно быстро разделить на два основных класса. Для дальнейшего разделения в прошлом использовали различные двойные нитраты, применяя метод фракционированной кристаллизации, [c.511]


    Для различных сульфатов группы ще,1Ючноземельных металлов температура начала их заметного разложения закономерно повышается от магния к барию и соответственно понижается скорость разложения. Следовательно, работа на разрушение старых связей между катионом [c.279]

    Головной погон жирных кислот или непосредственно или в виде эфиров гидрируется в спирты, являющиеся исключительно ценным компонентом этерификации для адининовой или фталевой кислот в производстве мягчи-телей. Нагреванием до 300° с железным порошком под давлением они могут быть с хорошим выходом переведены в кетоны со средним расположением кетонной группы. Последние могут применяться или в виде сульфатов [c.164]

    Как и для s-элементов II группы растворимость сульфатов в ряду S —Y—La быстро уменьшается.) Из водных растворов выделяются кристаллогидраты с переменным числом молекул воды, например 5с.,(504)з-5Н,0, 2(504)3-/HjO, ЭНаи-бНгО, УгССОа). ЗНпО, La2(504).r SHjO. [c.527]

    Сущность предлагаемого метода заключается в повышении кислотности катализатора во время проведения окислительной регенерации. Известно, что на адсорбцию 302 (ЗОз) АХзОз воздействуют два фактора температура и число присутствующих гидроксильных групп. Поэтому, чем сильнее гидратирование носителя катализатора, тем существеннее образование сульфатной серы. А так как при хлорировании катализатора происходит замещение группы -ОН на группы -С1, то при этом образования сульфатов не происходит, а катализатор сохраняет свою активность и механическую прочность. [c.56]

    Помимо простых (одноатомных) ионов в соединениях могут образовываться комплексные (многоатомные) ионы. В состав комплексного иона входят атом металла или неметалла, а также несколько атомов кислорода, хлора, молекулы аммиака (NH3), гидроксидные ионы (ОН ) или другие химические группы. Так, сульфат-ион, SO , состоит из атома серы и четырех окружающих его атомов кислорода, занимающих вершины тетраэдра, в центре которого находится сера общий заряд комплексного иона равен — 2. Нитрат-ион, NO , содержит три атома кислорода, расположенных в вершинах равнобедренного треугольника, в центре которого находится атом азота общий заряд комплексного иона равен — 1. Ион аммония, NH4, имеет четыре атома водорода в вершинах тетраэдра, окружающего атом азота, и его заряд равен + 1. Все эти ионы рассматриваются как единые образования, поскольку они образуют соли точно таким же образом, как и обычные одноатомные ионы, и сохраняют свою индивидуальность во многих химических реакциях. Нитрат серебра, AgNOj, представляет собой соль, содержащую одинаковое число ионов Ag " и NOj. Сульфат аммония-это соль, в которой имеется вдвое больше ионов аммония, NH , чем сульфат-ионов, SOj она описывается химической формулой (NH4)2S04. Другие распространенные комплексные ионы указаны в табл. 1-5. [c.33]

    Дать какие-то надежные критерии для распознавания нефте- и газопроизводящих отложений и даже для установления последовательности генерации нефтей, газоконденсатов и чисто метановых газов в настоящее время невозможно. Можно сказать лишь одно. Каждый пласт отлагается в определенной биогеохимической обстановке и отличается от смежных по содержанию СН и примеси в нем тяжелых УВГ, по содержанию сульфатов в иловой воде и нередко по общей ее солености, по содержанию ОВ и, возможно, также по степени преобразованности ОВ, содержанию различных групп микроорганизмов, геохимической характеристике и ТЛ. При выявлении масштабов генерации УВ различных типов необходимо особое внимание обратить на вероятность миграции основной их части по пластам вверх по восстанию пород, которая может приводить в конечном итоге к уходу УВ, в первую очередь СН , в атмосферу. Поэтому наряду с широким комплексом биогеохимических исследований необходимо проводить весьма тщательный и детальный анализ фациальных изменений отдельных пластов и также детальные палеотектонические построения. [c.111]

    При адсорбции монооксида углерода на исходном образце наблюдаются полосы поглощегия 2150, 2173, 2193 и 2202 см" , соответствующие СО, адсорбированному на гидроксильных группах, катионах Мд " , А1 + и Сг +, соответственно. После адсорбции сероводорода картина адсорбции СО существенно меняется. Практически полностью исчезают полосы поглощения 2193 и 2202 см , соответствующие СО, адсорбированному на льюисовских кислотных центрах (ЛКЦ) ЛР+ и Сг и резко уменьшается количество бренстедовских кислотных центров (БКЦ) (2150 см ), тогда как количество адсорбированного СО на катионах Мд + увеличивается. Это может происходить благодаря разрушению структуры шпинели МдСгр с образованием, например, сульфатов или сульфитов хрома и освобождением дополнительного количества свободных катионов магния (рис. 4.17). [c.120]

    Так, для алюминиевого коагулянта и сульфата дрехвалент-ного железа pH = 6—7, для сульфата двухвалентного железа pH = 8,5—9. В присутствии коагуляторов скорость осаждения высокодисперсных взвесей достигает 0,35—0,70 мм/с. Однако введение в воду флокулянта—водорастворимых полимеров с полярными группами — увеличивает скорость осаждения на 20-30%. [c.263]

    Тонкодисперсные нерастворенные загрязнения отстаивают с предварительной коагуляцией при помощи химических реагентов (коагулянтов, флоку-лянтов), образующих а воде хлопья. Последние захватывают при осаждении или сорбируют нерастворенные тонкодисперсные загрязнения и выделяются вместе с ними в осадок. Введение в сточную воду коагулянтов требует последующего доведения pH до величины, обеспечивающей полноту гидролиза соли и выпадения гидроокиси. Для алюминиевого коагулянта и сульфата трехвалентного железа pH = 6-т-7, для сульфата двухвалентного железа pH = = 8,6-3-9. Хлопья гидроокисей обладают развитой поверхностью и при осаждении захватывают взвешенные вещества воды. Скорость осаждения агрегатов клвпьев значительно выше скорости осаждения отдельных частиц и растет с глубиной осаждения. При использовании коагулянтов скорость осаждения высокодисперсных взвесей достигает 0,35—0,70 мм/с. Интенсификация осаждения взвесей, особенно при концентрации их в несколько десятков граммов в кубическом метре, в большинстве случаев достигается введением в воду фло-кулянтов—водорастворимых полимеров с полярными группами. В СССР наибольшее распространение получил как флокулянт полиакриламид. Действие флокулянтов основано на том, что концы их цепеобразных полимерных макромолекул захватываются взвешенными частицами, при этом образуются рыхлые крупные сетчатые трехмерные агрегаты, осаждающиеся со значительно большей скоростью, чем отдельные частицы взвеси. Применение флокулянтов в дозе 1—5 мг/л одновременно с коагулянтами повышает скорость осаждения взвеси на 20—30%. [c.336]


Смотреть страницы где упоминается термин Сульфат III группы: [c.190]    [c.212]    [c.48]    [c.245]    [c.594]    [c.594]    [c.594]    [c.457]    [c.43]    [c.270]    [c.394]    [c.417]    [c.337]    [c.436]    [c.47]    [c.48]    [c.120]    [c.197]    [c.258]    [c.396]    [c.252]    [c.15]    [c.394]   
Курс аналитической химии Издание 5 (1981) -- [ c.207 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ смеси катионов второй аналитической группы в присутствии сульфат ионов

Анализ смеси катионов второй аналитической группы в присутствии сульфат-ионов (Контрольная задача)

Анализ смеси катионов первой и второй групп в отсутствие сульфатов

Анализ смеси катионов первой и второй групп в отсутствие сульфатов, фосфатов и оксалатов

Анализ смеси катионов первой и второй групп в присутствии сульфат-ионов (исследуемый раствор содержит осадок)

Анализ смеси катионов первой и второй групп в присутствии сульфатов и в отсутствие фосфатов и оксалатов

Анализ смеси катионов первой и второй групп в присутствии фосфатов, сульфатов и оксалатов

Анализ смеси катионов первой, второй, третьей и четвертой групп в отсутствие сульфатов щелочноземельных металлов

Влияние сульфата титана на различные группы

Вторая группа анионов Реакции сульфат-иона

ПЕРЕЧЕНЬ СХЕМ АНАЛИЗА Схема 1. Анализ смеси катионов первой и второй групп в отсутствие сульфат-, фосфат- и оксалат-ионов

Первая группа анионов Реакции сульфат-иона

Систематический анализ смеси катионов первой, второй и третьей групп в отсутствие фосфат-и сульфат-ионов

Сульфаты как замещаемые группы

Сульфаты катионов II группы

Схема 2. Анализ смеси катионов первой и второй групп в присутствии сульфат-ионов

Схема 3. Анализ смеси катионов первой и второй групп в присутствии фосфат-, сульфат- и оксалат-ионов

Теоретические основы перевода сульфатов катионов второй аналитической группы в карбонаты

Фибриноген, растворимость в растворе сульфата аммония групп

группы перевод карбонатов в сульфаты



© 2024 chem21.info Реклама на сайте