Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойной слой тепловое движение

    ИОНОВ в двойном слое в действительности невозможно, так как помимо электростатических сил, возникающих между металлом и ионами, на последние должны действовать также силы теплового молекулярного движения. При наложении этих двух сил ионы в растворе должны распределяться относительно поверхности металла диффузно —с убывающей при удалении от иее объемной плотностью заряда, подобно тому, ка < меняется с высотой плотность воздушной атмосферы. При таком строении двойного электрического слоя для выражения связи между потенциалом и плотностью заряда уже нельзя пользоваться формулой плоского конденсатора. [c.264]


    На рис. У-2 показано строение двойного электрического слоя для растворов электролитов средней концентрации. Отрицательно заряженные ионы адсорбируются на поверхности твердого тела, образуя тонкий внутренний слой. Положительно заряженные ионы образуют внешний слой, причем концентрация этих ионов в нем убывает в направлении от поверхности твердого тела. Такой характер внешнего слоя объясняется взаимным влиянием электростатического поля, концентрирующего положительно заряженные ионы вблизи внутреннего слоя, и теплового движения молекул, равномерно распределяющего эти ионы во всем объеме жидкости. [c.192]

    Двойной электрический слой (ДЭС) состоит из заряженной поверхности с потенциалом фо и противоположно заряженной части слоя, в которой находятся противоионы (рис. 24). Одна часть противоионов примыкает непосредственно к поверхности, образуя плотный (адсорбционный) слой — слой Гельмгольца. Другая часть противоионов под действием теплового движения распространяется в глубь фазы, образуя так называемый диффузионный слой, или слой Гуи. [c.77]

    В непосредственной близости от межфазной границы преобладает действие электрического поля. С удалением от межфазной Границы сила этого поля постепенно ослабевает и проявляется все сильнее рассеивание противоионов двойного слоя в результате теплового движения, вследствие чего концентрация противоионов падает и становится равной концентрации тех же ионов, находящихся в глубине жидкой фазы. Таким образом возникает равновесный диффузный слой противоионов, связанных с твердой фазой. Понятно, что равновесие этого диффузного слоя динамическое. [c.177]

    Ионы раствора, образующие внешний двойной электрический слой, подвержены действию сил электрического поля зарядов на металле, а также дезориентирующих сил теплового движения. В результате этого ионы притягиваются частично к поверхности, образуя вблизи электрода слой Гельмгольца, и частично диффузно располагаются в пространстве в виде слоя Гуи [2]. [c.36]

    Поляризация частиц под влиянием электрического поля происходит прежде всего вследствие деформации двойного ионного слоя, окружающего частицы. В результате теплового движения и адсорбции ионы распределяются в межфазном объеме диффузно, симметрично окружая частицу, если последняя находится вне действия внешнего электрического поля. Если расстояние между частицами/г больше, чем удвоенное расстояние, на котором происходит нейтрализация зарядов, то частицы не будут электростатически взаимодействовать между собой. При перекрытии ионных сфер частицы электростатически отталкиваются. [c.7]


    Диффузный двойной слой образован ионами, которые расположены в растворе на некотором расстоянии от поверхности электрода, которое больше радиуса иона. Такое расположение ионов, так же как и в ионной атмосфере, получается под влиянием двух противоположных факторов электростатических сил, которые стремятся притянуть ионы плотно к поверхности электрода, и теплового движения, которое стремится расположить ионы хаотически в растворе. В результате ионы, входящие в состав [c.301]

    В отсутствие последних при положительном заряде поверхности электрода емкость велика, так как двойной слой состоит из сильно деформированных анионов. При смещении потенциала в электроотрицательную сторону деформация ионов уменьшается, т. е. возрастает и соответственно уменьшается величина С (П1.4). Вблизи от потенциала, соответствующего потенциалу незаряженной поверхности, изменения емкости почти не происходит. Как только знак заряда поверхности изменится на противоположный, анионы в двойном слое замещаются катионами. Поскольку радиус катионов больше, емкость снижается. В разбавленных растворах диффузность двойного электрического слоя увеличивается, что выражается меньшими значениями емкости. Кроме того, вблизи потенциала незаряженной поверхности на кривых дифференциальной емкости отмечается минимум, так как в этой области отсутствует действие кулоновских сил и тепловое движение вызывает наиболее сильное раз " вание двойного слоя. [c.104]

    Вполне естественно предположить, что подобное строение двойного слоя возможно при отсутствии теплового движения ионов, Б реальных же условиях распределение зарядов на границе раздела фаз в первом приближении определяется соотношением сил электростатического притяжения ионов, зависящего от электрического потенциала фо, и теплового движения ионов, стремящихся равномерно распределиться во всем объеме жидкой или газообразной фазы. К такому выводу независимо друг от друга пришли Гун и Чепмен. Они предположили, что двойной электрической слой имеет размытое (диффузное) строение и все противоионы находятся в диффузной его части — в диффузном слое. Поскольку протяженность диффузного слоя определяется кинетической энергией ионов, то в области температур, близких к абсолютному нулю, все противоионы будут находиться в непосредственной близости к потенциалопределяющим ионам. [c.54]

    В наиболее общем виде эта теория была разработана советскими учеными Б. В. Дерягиным и Л. Д. Ландау в 1937—1941 г.г. и несколько позднее независимо от них голландскими учеными Фер-веем и Овербеком. По первым буквам этих фамилий эта теория названа теорией ДЛФО. Чтобы получить представление о существе этой теории и ее следствиях, разберем простейший случай взаимодействия крупных частиц, для которых можно не учитывать теплового движения. Взаимодействие крупных частиц можно рассматривать как взаимодействие между двумя плоскими параллельными пластинами, т. е. принять, что линейный размер частиц значительно больше толщины двойного электрического слоя. [c.325]

    Ниже, в главе об электрокинетических явлениях, мы увидим, что в водных растворах электролитов около межфазной поверхности образуется так называемый диффузный электрический слой. При низких концентрациях электролита расстояние, на которое могут удаляться свободные заряды двойного слоя (ионы) от поверхности в глубь раствора под влиянием теплового движения, может достигать 1 мкм, т. е. толщина диффузного слоя будет порядка десятков тысяч ангстрем. [c.93]

    Влияние температуры. Аналогично концентрации на -потенциал действует и температура. С повыщением температуры -потенциал Должен расти вследствие возрастания интенсивности теплового движения противоионов и увеличения толщины двойного электрического слоя. Однако одновременно может возрастать и десорбция потенциалопределяющих ионов, и при этом фо- и -потенциалы уменьшаются. При понижении температуры должна наблюдаться обратная зависимость. Вопрос о том, как будет изменяться -потенциал с изменением температуры, очевидно, должен решаться отдельно для каждой коллоидной системы с учетом ее индивидуальных особенностей. [c.196]

    Двойной слой на границе раствор —металл создается электрическими зарядами, находящимися на металле, и ионами противоположного знака противоионами), ориентированными у поверхности электрода. В формировании ионной обкладки двойного слоя принимают участие как электростатические силы, под влиянием которых противоионы подходят к поверхности электрода, так и силы теплового (молекулярного) движения, в результате действия которых двойной слой приобретает размытое, диффузное строение. Кроме того, в создании двойного электрического слоя на границе металл —раствор существенную роль играет эффект специфической адсорбции поверхностно-активных ионов и молекул, которые могут содержаться в электролите. Теория двойного электрического слоя сложилась на основе работ Гельмгольца, Штерна, А. И. Фрумкина и др. [c.473]


    Диффузная часть двойного электрического слоя (слой Гюи) соответствует конденсатору, одна из обкладок которого как бы размыта . Этой обкладке отвечают ионы, отошедшие в глубь раствора вследствие их теплового движения. С удалением от поверхности раздела фаз количество избыточных ионов быстро убывает, а раствор становится нейтральным. Межфазный скачок потенциала представляет собой сумму скачков в плотной части двойного слоя и 1 1 -потенциала, равного скачку потенциала в слое Гюи. Ввиду того что общая толщина двойного электрического слоя остается незначительной, изменение потенциала при переходе от одной фазы к другой всегда носит скачкообразный характер. [c.228]

    Третью часть свободной энергии двойного слоя можно рассматривать как энергию, выигрываемую вследствие вторичного перераспределения ионов в окружающей жидкости. Перераспределение ионов, имеющее место после каждой элементарной стадии процесса зарядки, ответственно за образование заряда в жидкости. Однако такое образование жидкостного заряда не входит в свободную энергию двойного слоя. Накопление ионов вблизи поверхности раздела — это следствие перехода к равновесию между электростатическим притяжением поверхностных зарядов и термическим движением, стремящимся распределить ионы обоих знаков равномерно по всему объему раствора. Поэтому энергия, выигрываемая этими ионами, рассеивается благодаря тепловому движению. Если подойти с кинетической точки зрения к этому вопросу, то можно считать, что поскольку процесс перераспределения ионов в растворе является изотермическим, то электрическая работа, выигрываемая этими ионами, передается другим ионам и молекулам растворителя (воды) и в конечном итоге выводится из системы в виде тепла. [c.18]

    Однако такая простая картина строения двойного слоя может дать правильное представление о распределении зарядов на границе твердое тело—жидкость только в условиях низких температур и больших концентраций раствора электролита при большой плотности поверхностного заряда. В большинстве же случаев двойной электрический слой, состоящий из реальных носителей электрических зарядов — ионов, имеет более сложное строение. Под действием молекулярного теплового движения в жидкости ионы стремятся распределиться равномерно в рас- [c.28]

    Чтобы это предположение совместить с физической картиной двойного слоя, Грэм ввел представление о двух плоскостях приближения ионов к поверхности. Специфически адсорбированные ионы могут приближаться на более близкие расстояния к поверхности, и плоскость их максимального приближения x=xi была названа внутренней плоскостью Гельмгольца (рис. 62), Потенциал этой плоскости, измеренный относительно объема раствора, обозначается С другой стороны, ионы, участвующие в тепловом движении и образующие диффузный [c.114]

    Чтобы это предположение совместить с физической картиной двойного слоя, Д. Грэм ввел представление о двух плоскостях приближения ионов к поверхности. Специфически адсорбированные ионы могут приближаться на более близкие расстояния к поверхности, и плоскость их максимального приближения х = была названа внутренней плоскостью Гельмгольца (рис. 62). Потенциал этой плоскости, измеренный относительно объема раствора, обозначается г . С другой стороны, ионы, участвующие в тепловом движении и образующие диффузный слой, не могут подходить к поверхности электрода на расстояния ближе, чем х = х (рис. 62). Плоскость, параллельная поверхности на расстоянии х = х , называется внешней плоскостью Гельмгольца. Потенциал этой плоскости обозначается через -фо. [c.119]

    Прецизионные данные по дифференциальной емкости, полученные вначале на ртутном электроде, а затем на ряде других металлов (галлий, свинец, висмут, кадмий, сурьма, индий, цинк, олово, серебро и др.), послужили экспериментальной основой современной теории двойного электрического слоя. Для объяснения качественных закономерностей можно воспользоваться формулой плоского конденсатора (12.6), которая справедлива прежде всего для интегральной емкости. На рис. 31, а представлены кривые интегральной емкости для раствора поверхностно-неактивного электролита NaF. Ионы F" подходят к поверхности ближе, чем ионы Na+, поэтому в области адсорбции анионов емкость выше, чем при дС.О. В разбавленном растворе NaF вблизи п. н. з. среднее расстояние ионов до поверхности значительно возрастает, поскольку в этих условиях ионная обкладка двойного слоя наиболее сильно размывается тепловым движением. Поэтому здесь на К, -кривой наблюдается минимум. Слагаемое в уравнении (12.23), пропорциональное dK/dE, делает зависимость С от Е более сложной (рис. 31, б). [c.56]

    Дальнейшее развитие теории двойного электрического слоя было дано в работах Фрумкина и его школы, Бокриса, Деванатхана, Есина, Мюллера, Парсонса, Эршлера и др. Наибольшее признание и распространение получила модель двойного электрического слоя, предложенная Грэмом (1947). Согласно Грэму, обкладка двойного электрического слоя, находящаяся в растворе, состоит не из двух, как предполагал Штерн, а из трех частей. Первая, считая от поверхности металла, называется внутренней плоскостью Гельмгольца, в ней находятся лишь поверхностно-активные ноны либо если их нет в растворе, молекулы растворителя-. В первом случае заряд плоскости равен <71, во втором — нулю ( 71 = 0), потенциал ее, отнесенный к раствору, обозначается ч( рез г 5). Следующая, удаленная от поверхности металла на расстояние, до которого могут подходить ионы (центры их заряда) в процессе теплового движения, называется внешней плоскостью Гельмгольца ее общий заряд, отнесенный к единице поверхности, равен /2, а потенциал плоскости -фг- [c.271]

    Как уже отмечалось, н полупроводника <, в отличие от металлов имеется два рода носителей заряда отрицательные--электроны и положительные — дырки. Поэтому проводпнкн по ряду свойств похожи на электролиты, где также присутствуют отрицательные и положител( Пые носители электричества — апиопы и катионы. Эта аналогия обнаруживается и и строении двойного электрического слоя, В ре.чультате наложения сил теплового движения и сил взаимодействия (притяжения и отталкивания) с поверхностью полупроводника внутри песо вблизи Гранины раздела устанавливается диффузное распределение зарядов и возникает так называемый объемный заряд. Таким образом, двойной электрический слой на границе раздела включает в себя как бы два слоя Гуи — один в раство- [c.274]

    Как уже отмечалось, на границе между проводником первого рода и электролитом возникает двойной электрический слой. Однако рассмотренный выше (см. рис. XX, 1) двойной слой, который на плоском электроде образует плоский кондеп-сагор, является лишь упрощенной моделью. Такая модель бь[ла впервые предложена Гельмгольцем в 1879 г. Более поздние исследования показали, что ионы двойного электрического слоя принимают участие в тепловом движении, которое, в зави-  [c.537]

    И. Ф. Ефремовым [13] развито представление о том, что при желатинировании многих золей и суспензий возникновение пространственной сетки обязано силам притяжения между частицами, действующим при сохранении разделяющего их потенциального барьера. При достаточно высоком потенщ1але поверхности и малой толщине двойных ионных слоев, что соответствует сравнительно большой концентрации электролита в дисперсной системе, на результирующей кривой энергетического взаимодействия появляется яма, отвечающая дальним расстояниям. Если глубина такого минимума велика по сравнению с энергией теплового движения, то частица может зафиксироваться в нем, и наступит коагуляция, называемая в отличие от случая непосредственного контакта поверхностей коагуляцией во вторичном миниму.ме (рис. 1.1). [c.13]

    В настоящее время существуют следующие представления о строении двойного слоя. Соприкосновение двух фаз, как указывалось, приводит к возникновению противоположных зарядов на границах раздела фаз. Ионы и молекулы л идкой фазы, находящиеся в непосредственной близости от поверхности твердой фазы, испытывая действие больших электростатических сил, образуют адсорбционный слой. На ионы вне этого слоя действуют противоположно направленные силы с одной стороны — силы молекулярного теплового движения, которые стремятся распределить их равномерно, с другой стороны — силы электростатического поля зарядов, представляющего разность между поверхностной плотностью зарядов твердой фазы и плотностью зарядов адсорбционного слоя. В результате концентрация ионов по мере удаления от границы адсорбционного слоя уменьшается по статистическому закону Больцмана аналогично распределению газовых молекул в поле сил тяжести. Слой с рассеянным распределением. ионов называется диффузным. [c.112]

    Однако прочно к поверхности ионы К+ не присоединяются (они образуют с поверхностью растворимые соединения), а так как их концентрация около поверхности больше, чем в растворе, то они диффундируют в сторону меньшей концентрации, т. е. от поверхности в раствор. На поверхности кристалла Ag l возник двойной электрический слой (рис. 36), состоящий из внутренней обладки, или адсорбционного слоя (ионы 1 ), и наружной обкладки, или слоя противоионов (ионы К+). Часть противоионов связана с поверхностью относительно прочно и входит в плотный слой остальные противоионы, со-вершаюшие тепловое движение около поверхности, составляют диффузную часть ДЭС (диффузный слой). Распределение противоионов между плотной и диффузной частями ДЭС определяется соотношением между электростатически.м притяжением ионов к поверхности и их диффузией в раствор последняя определяется тепловым движением ионов и зависит от разности концентраций в ДЭС и объеме раствора. [c.65]

    Физико-химическое дробление осадков (пептизация). Пептиза-цией называют дробление рыхлых осадков, в которых имеются отдельные частицы дисперсной фазы, разделенные прослойками дисперсионной среды. Их непосредственному соприкосновению мешают либо двойные электрические слои, либо сольватные оболочки на поверхности частиц. Они обеспечивают отталкивание частиц на близких расстояниях, тогда как на более далеких преобладают силы межмолекулярного притяжения, не дающие частицам разойтись за счет теплового движения. [c.79]

    В разработке современной теории строения двойного электрического слоя на границе твердая фаза — жидкость и методов его исследования ведущая роль принадлежит А. Н. Фрумкину и его школе. Работы А. Н. Фрумкина и его учеников установили, что слой ионов, располагающийся в нсидкости, благодаря действию двух противоположно направленных сил (электростатического притяжения и теплового движения) имеет диффузное строение, т. е. он проникает в жидкость на некоторую глубину (рис. 55). [c.224]

    С развитием теории электролитической диссоциации и введением понятия об ионах появилась теория, развитая в работах Гуи (1910), согласно которой двойной электрический слой имеет диффузное строение. Дело в том, что под воздействием двух взаимно противоположных сил (электростатического притяжения и теплового движения частиц жидкости) противоионы образуют около твердой поверхности адсорбента (коллоидной частицы) диффузную ионную атмосферу (рис. 93, //). Приче.м концентрация противоионов, наибольшая около заряженной поверхности твердой фазы, убывает по мере уВбЛНЧбпия расстояния от границы раздела фаз по направлению внутрь раствора. [c.314]

    Теория Гуи — Чэпмена. Значительным шагом вперед явилась теория двойного электрического слоя с диффузным слоем противоионов, предложенная независимо друг от друга Гуи (1910 г.) и Чэпменом (1913 г.). Эта теория в значительной мере устранила недостатки теории Гельмгольца — Перрена. По теории Гуи —Чэпмена противоионы не могут быть сосредоточены только у межфазной поверхности и образовывать моноионный слой, а рассеяны в жидкой фазе на некотором расстоянии от границы раздела. Такая структура двойного слоя определяется, с одной стороны, электрическим полем у твердой фазы, стремящимся притянуть эквивалентное количество противоположно заряженных ионов возможно ближе к стенке, а с другой стороны, тепловым движением ионов, [c.176]

    Легко видеть слабые стороны такого объяснения агрегативной устойчивости. Весьма трудно представить себе возникновение в результате сольватации противоионов вокруг лиофобных частиц сплошных сольватных оболочек, препятствующих слипанию частиц прн их сближении. В самом деле, сольватные йболочки из полярных молекул среды образуются отдельно вокруг каждого противоиона двойного слоя. Это должно приводить к тому, что на границе, разделяющей оболочки двух соседних одноименно заряженных противоионов, молекулы среды, представляющие собой диполи, будут обращены друг к другу одноименно заряженными концами и< следовательно, будут испытывать взаимное отталкивание. Кроме того, следует помнить, что микроструктура окружающего частицы слоя непрерывно меняется в результате теплового движения ионов. Понятно, > то при таких условиях говорить о создании в результате притяжения и ориентации диполей какого-то синюшного слоя из сцепленных друг с другом ионов и молекул среды, нужного для обеспечения положительного раскли-яивающего давления или упругости сольватной оболочки, просто невозможно. Положительное расклинивающее давление, обусловливающее агрегативную устойчивость лиофобных коллоидов, может возникать лишь в результате деформации ионных атмосфер, т. е. может определяться только электростатическими силами. [c.282]

    Предположим теперь, что на некотором расстоянии от первой плоскости с дискретными зарядами (внутренняя плоскость Гельмгольца) находится вторая с равномерно размазанным зарядом, равным по величине, но противоположным по знаку заряду первой плоскости (внешняя плоскость Гельмгольца). Такое различие в свойствах внешней и внутренней плоскостей Гельмгольца является некоторым допущением теории двойного слоя, поскольку дискретный характер зарядов проявляется также и в диффузном слое. Физическим основанием для 9Т0Г0 допущения является то обстоятельство, что поступательное тепловое движение ионов в пределах диффузного слоя в большей степени приводит к размазыванию заряда по сравнению с колебательным движением специфически адсорбированных ионов. Дискретный характер распределения ионов на внешней плоскости Гельмгольца оказывает заметное влияние на кинетику электродных процессов. Однако [c.123]

    Рассмотрим результаты, полученные при измерении емкости двойного электрического слоя. На рис. 58 представлены кривые емкости висмутового электрода в водных растворах КР различной концентрации. При уменьшении концентрации на С, Е-кривых появляется минимум, положение которого совпадает с потенциалом нулевого заряда. Наличие минимума при Е =о связано с тем, что в этих условиях ионная обкладка двойного слоя наиболее сильно размывается тепловым движением, эффективное расстояние между обкладками конденсатора увеличивается, и его емкость падает. Таким образом, измерения емкости в разбавленных растворах симметричного поверхностно-неак- [c.155]


Смотреть страницы где упоминается термин Двойной слой тепловое движение: [c.274]    [c.537]    [c.330]    [c.55]    [c.323]    [c.404]    [c.234]    [c.418]    [c.28]    [c.119]    [c.62]    [c.119]    [c.179]    [c.185]    [c.432]   
Практикум по теоретической электрохимии (1954) -- [ c.55 ]




ПОИСК





Смотрите так же термины и статьи:

Движение тепловое



© 2025 chem21.info Реклама на сайте