Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плавиковая кислота, очистка

    В ФРГ подробно разбирается химическая очистка фтористоводородной кислотой, применяемой как в виде солей, добавляемых для ускорения процесса растворения отложений, так и самостоятельно. Обсуждается химизм и кинетика растворения железоокисных отложений во фторосодержащнх кислотах. Наблюдаемая большая скорость растворения оксидов железа в растворах плавиковой кислоты связывается с комплексообразующими свойствами фторидов. Преимущества использования плавиковой кислоты заключаются в воз-мол<ности применения ее в виде холодных или слабонагретых растворов при незначительных скоростях движения раствора в прямоточных котлах и в отсутствие циркуляции для барабанных котлов. К недостаткам плавиковой кислоты относят растворение ею только железоокисных отложений и ограниченность сброса фторидов. [c.12]


    Разработан способ очистки технической плавиковой кислоты путем ее обработки марганцевокислым калием и маннитом. Маннит и дульцит предложено использовать в литейном производстве для изготовления форм [17]. Применение разбавленных растворов маннита для промывки двуокиси титана улучшает оптические свойства пигментов [18]. [c.182]

    К таким работам относятся а)растворение металлов и руд в азотной кислоте с выделением оксидов азота б) обработка солянокислых растворов хлоратом калия с выделением хлора в) выпаривание и обработка плавиковой кислотой и ее солями, связанные с выделением фтора г) действие кислоты на технический цинк, обычно содержащий мышьяк, сопровождающееся выделением мышьяковистого водорода д) подкисление растворов, содержащих цианиды е) подкисление растворов, содержащих тиоцианаты (роданиды) ж) сильное подкисление растворов, содержащих ферроцианиды калия (натрия) з) подкисление растворов сульфидов и) подкисление растворов, содержащих соли брома к) выпаривание сероводородных растворов л) осаждение сульфидов металлов сероводородом м) очистка и заправка аппаратов для получения сероводорода н) прокаливание осадков, содержащих ртуть и мышьяк о) отгонка хлористого хромила п) разливка аммиака, брома, пиридина и других едких жидкостей. [c.371]

    Метод декорирования заключается в том, что на поверхность (обычно свежий излом) конгломерата или монокристалла способом вакуумного распыления наносится небольшое количество вещества, не образующего с исследуемым материалом химического соединения. В результате напыленное вещество, количество которого обычно меньше, чем нужно для образования сплошной моно-молекулярной пленки, концентрируется только на активных участках поверхности объекта (дефектах, узлах и т. п.), образуя зародыши кристаллов и делая эти участки видимыми ( декорируя их). Наиболее широкое распространение получило декорирование минералогических объектов золотом. Последовательность операций при декорировании, например, конгломерата каолинита следующая конгломерат разламывают в руках для обнажения свежей поверхности, один из кусочков материала помещают в вакуумную установку и нагревают до 300—450°С в течение 15—30 мнн для очистки поверхности от примесей и приставших частиц через несколько минут после прекращения нагрева без нарушения вакуума производят распыление золота, а затем на поверхность наносят угольную пленку (реплику), которую отделяют растворением образца в плавиковой кислоте. [c.135]


    Кристаллический бор может быть получен также сплавлением аморфного бора с алюминием, в котором он кристаллизуется. Для удаления алюминия плав растворяют в разбавленной соляной кислоте и затем (для окончательной очистки) промывают в плавиковой кислоте, в которой бор не растворяется. [c.439]

    Высушенный продукт обрабатывается 20%-ной плавиковой кислотой (выдерживается в ней 12—17 ч) и затем промывается водой для полного удаления из продукта плавиковой кислоты. Промытый и отжатый продукт снова сушится под вакуумом при температуре 100° С. На этом процесс приготовления и очистки дисульфида молибдена заканчивается. [c.28]

    Очистка. Плавиковую кислоту, применяемую при определении железа (П) титрованием перманганатом или дихроматом, очищают от примесей органических веществ, диоксида серы и железа. Для этого к плавиковой кислоте добавляют в платиновой чашке растертый в порошок перманганат калия до получения интенсивного фиолетового [c.300]

    Значительное количество солей фтора используется в металлургии, В США около 70% добываемого плавикового шпата (СаРг) расходуют в качестве флюса в мартеновских и электрических печах, В качестве флюса при производстве магниевых сплавов и при термической обработке режущего инструмента используют фторид магния. Криолит, фториды алюминия, натрия, лития применяются в производстве алюминия. Фторид бериллия и его двойная соль с фторидом натрия используются в производстве бериллия. Фториды натрия, калия, аммония входят в состав легкоплавких смесей, используемых при извлечении различных металлов из их соединений Плавиковую кислоту применяют для очистки чугунных отливок от формовочного песка. [c.316]

    Заводы, перерабатывающие плавиковую кислоту в криолит, теряют значительную часть фтора, выпуская его в виде кремнефторида или фторида натрия, получаемых в качестве побочных продуктов в процессе очистки 5-5 .  [c.329]

    Кремнефторид калия получают обработкой кремнефтористоводородной кислоты хлористым калием и при очистке плавиковой кислоты поташом . [c.357]

    Для удаления всех этих загрязнений можно использовать жидкостную очистку, высокотемпературное окисление, плазменные методы и шлифование. При жидкостной очистке применяют растворы кислот, оснований и органические растворители (спирты, кетоны, хлорированные углеводороды, фреоны и др.). Воду и незначительные количества диоксида кремния можно удалить при 1000°С в кислороде, вакууме или восстановительной атмосфере. Метод нельзя использовать в случае, когда высокая температура изменяет свойства подложки, например, диффузионных слоев. Диоксид кремния, кроме того, удаляют плавиковой кислотой с добавками или травлением плазмой. Для других неорганических загрязнений используют сильные неорганические кислоты или окислительные смеси типа хромовой. Жидкостная очистка производится погружением, обработкой парами растворителя, ультразвуком и пульверизацией. Очистка парами растворителя очень распространена и эффективна, особенно если сочетается с пульверизацией. Рекомендуется использовать негорючие растворители (фреоны, хлорированные углеводороды), [c.16]

    В 1886 г. этот французский химик электролизом фтороводорода получил фтор. Ученый знал о разрушающих свойствах фтора, поэтому он изготовил электролизер целиком из платины, электроды — из иридиево-платинового сплава, а чтобы охладить пыл элемента-незнакомца, электролиз вели при -23 °С. Химик заявил об открытии нового элемента, и Парижская академия наук назначила комиссию для проверки результатов. Перед началом испытаний ученый еще раз перегнал исходное сырье — плавиковую кислоту — для повторной очистки. И опыт не получился очень чистая плавиковая кислота не проводила электрический ток... Однако в последующих опытах химику удалось показать, что добавление нескольких кристалликов фторида калия увеличивает проводимость и электролиз идет успешно. Назовите имя этого химика. [c.279]

    Обычным приемом, применяемым в нефтеперерабатывающей промышленности для получения высокооктанового моторного топлива, является алкилирование изопарафинов олефинами в присутствии катализатора, предпочтительно плавиковой кислоты или фтористого водорода (НР). Поток, выходящий из реактора алкилирования, обычно проходит через отстойник, где углеводородная фаза отделяется от кислотной фазы. Углеводородную фазу подвергают фракционированию для отделения низкокипящих углеводородов от продуктов алкилирования. Кислую фазу охлаждают и возвращают в реактор алкилирования. Однако рециркулируемую кислую фазу необходимо подвергать частичной очистке, чтобы предотвратить образование в системе кислоторастворимых масел (КРМ) и воды. [c.193]


    Взаимодействие кремнефтористоводородной кислоты с хлористым натрием или сульфатом натрия прп утилизации фтора и суперфосфатном производстве и при очистке фосфорной и плавиковой кислот от кремне-фтористоводород-иой кислоты [c.229]

    Для дальнейшей очистки его непродолжительное время нагревают с разбавленной щелочью, которую отмывают водой, а бор нагревают 0,5 ч в платиновой чашке с плавиковой кислотой почти до полпого ее испарения. После этого в чашку приливают воду и нагревают, а бор отфильтровывают. Бор содержит около 5% примесей. [c.170]

    Техническая плавиковая кислота обычно содержит ряд примесей — Ре, РЬ, Аз, Н231Рб, ЗОг и др. Для грубой очистки ее подвергают перегонке в аппаратуре, изготовленной целиком из платины (или свинца), отбрасы- [c.248]

    Можно отделить скандий от Y, РЗЭ, Th, U и на анионитах [34]. Скандий хорошо сорбируется анионитами из растворов, содержащих 1 моль/л HF и переменное количество НС1, что дает возможность использовать фторидные растворы для отделения скандия от Th, Al и РЗЭ. При десорбции 4—8 М растворами НС1 дополнительно удается отделить скандий от Fe +, Sn, Nb, Та, U [34]. Для отделения от V, As, Ti проводят адсорбцию на анионитах из 0,5—2,5 М растворов noHF. Десорбируют скандий 15-молярной плавиковой кислотой выход 90— 100%. Для очистки от Си +, Со +, Zn " " и d + рекомендуется адсорбировать скандий на анионитах из сильнокислой среды [35]. От тория и урана можно отделить скандий на анионитах в связи с тем, что коэффициент распределения его меньше, чем у них. Адсорбируют из 2—3 М раствора нитрата магния на сильноосновном анионите. Десорбируют скандий раствором нитрата магния, а урана и тория — 2,4 М соляной кислотой. Уран и железо отделяются от скандия также и при адсорбции из солянокислых растворов на сильноосновном анионите, обработанном предварительно 7 М НС1 [2, стр. 109]. [c.27]

    Очистка отходящих газов от галогенов и их соединении. Основными источниками поступления в атмосферу соединений фтора являются производства фосфорных удобрений, плавиковой кислоты и ее солей, фтороганических соединений и металлического алюминия. В дымовые газы фтор поступает в виде НР, 81р4 и тумана Н281Рб. Для их выделения используют методы сухой и мокрой абсорбции. [c.232]

    Кристаллизация комплексных фторидов. Для кристаллизации удобен Кг гРв вследствие большой разницы в растворимости при комнатной и повышенной температурах. Исходным материалом для получения Кг гРв служит техническая гидроокись циркония. Ее растворяют в плавиковой кислоте при 90—100°. После отделения фильтрованием СаЕг и большей части фторидов железа и алюминия раствор нейтрализуют КОН или К2СО3. При охлаждении из него выпадает кристаллический осадок Кг гРв, который получается также при добавлении КР к сернокислым растворам, полученным при выщелачивании спеков (извлечение до 90%). При кристаллизации К22гРв отделяется большинство примесей полная же очистка от железа и титана достигается только при повторной перекристаллизации (табл. 81). После двух перекристаллизаций содержание примесей в [c.322]

    Кислотные обработки применяются в нагнетательных и добывающих скважинах в процессе их освоения, для увеличения производительности (приемистости) скважин, для очистки призабойной зоны скважин от образований, обусловленных процессами добычи нефти и закачки воды. В качестве базовых химических реагентов ийпользуют соляную и плавиковую кислоты, а также уксусную, сульфаминовую, серную кислоту, смеси органических (оксидат) и неорганических (глинокислота НС1 + + HF) кислот. [c.8]

    Известны попытки использования газообразного BFg для деазотирования нефтепродуктов [106]. В последующем реагент отдували воздухом. Позже для этих целей был предложен комплекс HFg-H. O с последующим отделением продуктов центрифугированием и обработкой рафината известью и отбеливающей землей. Работы в данной области в США и в других странах продолжаются, что объясняется простотой и технологической гибкостью процессов очистки с применением BF,, возмолшостью простым изменением расхода реагента получать необходимую степень очистки от любых гетероорганических соединений. Однако метод очистки с BF3 имеет существенный недостаток — необходимость тщательной очистки готового продукта от следов BF3, что обусловлено его склонностью к гидролизу с образованием сильной гидроксофторборной и плавиковой кислот. [c.99]

    Н251Рб. Как видно из диаграммы, в системе НР—НгО имеется азеотропная смесь, содержащая 37,5% НР и кипящая при 109 (760 мм рт. ст.) . По другим данным составы азеотропных смесей и точки их кипения 43,2°/о НР и 111 или 35,4% НР и 120° такие расхождения, очевидно, вызваны трудностью очистки плавиковой кислоты от Н251Рб. Более точным, вероятно, является состав азеотропной смеси с концентрацией НР 38,26%, кипящей при 112° под давлением 750,2 мм рт.ст. о. На рис. 318 и 319 приведены [c.308]

    Предложен метод химического обогащения плавикового шпата— очистка его от ЗЮг обработкой плавиковой кислотой. Образующийся раствор H2SiFe отделяют от осадка СаРг и подвергают гидролизу выпариванием при 600—800°. Продуктами гидролиза являются кремнегель (мельчайший белый порошок с плотностью 0,06 0,16 zj M и удельной поверхностью 200 M ja) и фтористый водород, который улавливают водой и возвращают в процесс чз-иб Согласно ГОСТ 7618—70, плавиковый шпат выпускают следующих марок  [c.320]

    Наиболее полная очистка газов от серной кислоты (до 90%) с наименьщими потерями HF и HaSiFe в конденсирующейся на коксе серной кислоте достигается при поддержании в очистителе высокой температуры. С этой целью газоход от печи до коксовой колонки покрывают тепловой изоляцией. Очищенный газ с температурой 75—90° направляют на абсорбцию водой для получения плавиковой кислоты. [c.325]

    Предложен способ очистки газообразного HF от SiF4 в процессе абсорбции. Для этого газ нагревают до 150—500° и затем направляют в абсорбер, где за счет вносимого газом тепла идет разделение и концентрирование получаемых кислот —из нижней части колонны отбирают концентрированный раствор HaSiFe, а из средней 25—38%-ную плавиковую кислоту. Уносимая газом вода конденсируется в дефлегматоре. Для очистки технической плавиковой кислоты от летучих примесей (HaSiFe, SO2) рекомендуют подвергать ее дистилляции, сопровождаемой продувкой воздухом или азотом под давлением 2,5 ат, при температуре в кубе 48°. Расход воздуха 25 кг на 1 кг HF, потери HF с отходящим газом 1%. [c.329]

    Обычно в лаборатории плавиковую кислоту получать невыгодно, так как это продажный реактив, имеющий достаточную степень чистоты. В целях дополнительной очистки ее можно перегонять в платиновом приборе, добавляя в дистилляционную колбу Nap и немного РЬСОа. [c.185]

    Очистка от зольных компонентов. Многократное кипячение с разб. HNOa прокаливание в потоке хлора при 900—1000°С обработка плавиковой кислотой для удаления силикатов многочасовое прокаливание при 2000—3000 0 в вакууме, в атмосфере СО или инертных газов (при этом происходит, правда, изменение структуры — графитизация, т. е. переход к структуре графита). [c.669]

    Материал поступает затем в обогреваемую вращающуюся печь 6, в которой реакция доводится до конца. Образующаяся плавиковая кислота в газообразном виде отводится из загрузочной головки вращающейся печи в колонну предварительной очистки 7, в которой происходит ее обеспыливание и отделение тяжелолетучих загрязнений (серная кис.10та и вода). С помощью последовательно включенных в схему установки конденсаторов и дяетилляционных колонн [c.177]


Смотреть страницы где упоминается термин Плавиковая кислота, очистка: [c.129]    [c.177]    [c.171]    [c.114]    [c.106]    [c.42]    [c.79]    [c.65]    [c.49]    [c.213]    [c.93]    [c.159]    [c.164]    [c.165]    [c.437]    [c.94]    [c.328]    [c.329]    [c.16]    [c.281]    [c.113]    [c.303]   
Колориметрическое определение следов металлов (1949) -- [ c.29 ]




ПОИСК





Смотрите так же термины и статьи:

Кислота плавиковая



© 2025 chem21.info Реклама на сайте