Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Паи типические

    Строение многоэлектронных атомов. Принцип заполнения. Принцип запрета Паули и спаривание спинов. Правило Гунда. Эффективный заряд ядра. Орбитальная конфигурация и энергия ионизации. Валентные электроны и валентные орбитали. Типические элементы, внутренние переходные металлы, переходные металлы и благородные газы. Сродство к электрону. [c.385]


    К р-элементам III группы относятся типические элементы — бор и алюминий — и элементы подгруппы галлия — галлий, индий и таллий  [c.435]

    Самые внещние s- и р-электроны ответственны за важнейшие химические свойства атомов в случае типических элементов они называются валентными электронами. Орбитали d- и /-типа глубже погружены в общее электронное облако атома. Заселение этих орбиталей в атомах переходных металлов и внутренних переходных металлов (лантаноидов и актиноидов) оказывает меньшее влияние на химические свойства. Все же d-электроны определенным образом влияют на химические свойства переходных металлов, и в таких элементах валентными считаются электроны на внешних d-, S- и р-орбиталях. [c.408]

    Расстояние между ядрами двух связанных между собой атомов (например, в молекулах Н или Na С1 ) называется длиной связи. В молекуле водорода длина связи равна 0,74 А. Каждый ром водорода в Hj может быть охарактеризован атомным радиусом 0,37 А. На рис. 9-5 схематически представлены размеры атомов и ионов некоторых типических элементов и указаны их средние радиусы эти значения определены из экспериментально наблюдаемых длин связи во многих молекулах. Атомные радиусы в большинстве случаев сопоставлены с размером соответствующей замкнутой оболочки положительного или отрицательного иона элемента. [c.403]

    Простые вещества. Некоторые сведения о простых веществах элементов подгруппы брома и типических элементов приведены ниже (для обычных условий)  [c.298]

    К/ -элементам VI Группы ОТНОСЯТСЯ типические элементы — кислород О сера 8 и элементы подгруппы селена — селен 8е, теллур Те, полоний Ро  [c.309]

    К 5-элементам II группы относятся типические элементы — бериллий Ве и магний М и элементы подгруппы кальция — кальций Са, стронций 5г, барий Ва, радий Ка. Некоторые константы этих элементов приведены ниже  [c.470]

    Наиболее устойчивые элементы - благородные газы-располагаются в последовательном ряду элементов с возрастающими порядковыми номерами с интервалами 2, 8, 8, 18, 18 и 32. Зная эти интервалы и наиболее важные сходства в свойствах элементов, можно построить периодическую таблицу, в которой сходные элементы располагаются друг под другом в вертикальных колонках - группах, а химические свойства элементов закономерно изменяются вдоль горизонтальных рядов-периодов. Полную, длиннопериодную форму периодической таблицы можно Представить в компактной, свернутой форме, наглядно иллюстрирующей возможность разбиения всех элементов на три категории типические (непереходные) элементы, для которых характерно значительное изменение свойств внутри периодов переходные металлы, более сходные между собой по свойствам, и внутренние переходные металлы с чрезвычайно близкими свойствами. [c.323]


    Таким образом, все элементы можно подразделить на три большие части (см. рис. 7-3) типические (или непереходные) элементы, для которых характерно значительное изменение свойств внутри каждого периода переходные металлы, более сходные друг с другом, но все же легко различимые, и, наконец, внутренние переходные металлы (лантаноиды и актиноиды) с очень сходными свойствами. Название типических элементов связано с тем, что они обнаруживают гораздо большее разнообразие свойств, чем другие элементы, а также изучены раньше других. [c.316]

    Существует более компактная форма периодической таблицы, которая нагляднее показывает относительное изменение свойств соседних элементов (рис. 7-4). Закономерности изменения химических свойств могут быть легче поняты, если исследовать только типические элементы, рассматривая переходные металлы отдельно как особый случай и вообще оставляя в стороне вопрос о внутренних переходных металлах. В такой таблице вертикальные колонки называются группами и группы типических элементов нумеруются от 1А до УПА, а группа инертных (благородных) газов счи- [c.316]

Рис. 7-4. Компактная, короткопериодная форма периодической таблицы, подчеркивающая естественное подразделение всех элементов на три категории типические элементы с быстро изменяющимися свойствами, более сходные между собой переходные металлы и чрезвычайно сходные внутренние переходные металлы. Неметаллические элементы расположены Рис. 7-4. Компактная, короткопериодная <a href="/info/610615">форма периодической таблицы</a>, подчеркивающая естественное подразделение всех элементов на три категории <a href="/info/2348">типические элементы</a> с быстро изменяющимися свойствами, более сходные между <a href="/info/1795776">собой</a> <a href="/info/2575">переходные металлы</a> и чрезвычайно сходные <a href="/info/132719">внутренние переходные</a> металлы. <a href="/info/221230">Неметаллические элементы</a> расположены
    Как можно видеть из рис. 7-5, элементы первых трех периодов образуют с водородом соединения, в которых число атомов водорода, приходящееся на один атом типического элемента, в пределах каждого периода закономерно изменяется от 1 до 4 и снова до 1. Число присоединенных ато.мов водорода оказывается равным номеру группы элемента или 8 минус номер его группы в зависимости от того, какой из двух вариантов меньше. Уже одного этого факта достаточно, чтобы объяснить, как связаны атомы водорода в его. соединениях. [c.318]

    Пользуясь изложенными выше правилами, можно вычислить степени окисления атомов в большинстве молекул и комплексных ионов. При этом оказывается, что каждому элементу присущи характерные для него степени окисления, которые связаны с его положением в периодической системе. На рис. 10-1 показано изменение степеней окисления типических (непереходных) элементов с повышением их порядкового номера. Высшая степень окисления этих элементов в каждом периоде обычно возрастает от -Ь 1 до -Ь 7. [c.417]

    Чем отличаются элементы, принадлежащие к трем важнейшим категориям,-типические элементы, переходные металлы и внутренние переходные металлы  [c.324]

    Как изменяется валентность типических элементов в их соединениях с водородом и в оксидах в зависимости от номера группы, к которой принадлежит элемент  [c.324]

    После окончательного заполнения 3< -орбиталей начинается заселение электронами 4р-орбиталей этот процесс ничем не нарушается и соответствует построению ряда типических элементов от галлия, Оа, с валентной структурой 3 °4. -4р до благородного газа криптона, Кг, с конфигурацией 3 °4х 4р. Первая энергия ионизации, последовательно повышавшаяся при возрастании ядерного заряда в ряду переходных металлов, резко падает у Оа, где новый электрон поступает на менее устойчивую 4р-орбиталь. [c.398]

    У элементов п-го периода сначала происходит заполнение -орбиталей, способных принять два электрона. Эти элементы образуют семейства щелочных металлов (группа 1А) и щелочноземельных металлов (группа ПА) и относятся к типическим (непереходным) элементам. [c.399]

    На примере гидридов и оксидов типических элементов хорошо иллюстрируется корреляция между валентностью и номером группы элемента. Элементы, расположенные в левом нижнем углу периодической системы, представляют собой металлы. Они образуют ионные гидриды и оксиды, водные растворы которых обладают основными свойствами. Элементы, расположенные в верхнем правом углу периодической системы, являются неметаллами. Их соединения с водородом и оксиды представляют собой небольщие молекулы с ковалентными связями при нормальных условиях они существуют в форме жидкостей или газов и проявляют кйслотные свойства. В промежуточной части периодической таблицы между ее верхним правым и нижним левым углами находятся элементы, которые обнаруживают постепенно изменяющиеся свойства. По мере перехода от неметаллических элементов к семиметаллическим и далее к металлам их соединения с водородом становятся вместо кислотных инертными или нейтральными и далее основными (хотя эта общая закономерность осложняется многими отклонениями), а оксиды переходят более закономерным образом от кислотных к амфотерным и далее к основным. [c.323]


    Почему химические свойства переходных металлов изменяются в меньшей Степени, чем у типических (непереходных) элементов  [c.409]

    Типические (непереходные) элементы. [c.415]

    У элементов рассматриваемой группы -орбитали полностью заполнены, и, таким образом, они завершают ряды переходных элементов. Следующие электроны должны поступать на более высокие по энергии р-ор-битали, и после этих элементов в соответствующих периодах располагаются типические (непереходные) элементы с быстро изменяющимися вдоль периодов свойствами. [c.449]

    Криптон Кг, ксенон Хе и радон Rп характеризуются меньшей энер-, ией ионизации атомов, чем типические элементы VIII группы. Поэтому элементы подгруппы криптона дают соединения обычного типа. Так, ксенон проявляет степени окисления +2, - -4, +6 и +8. По характеру соединений ксенон напоминает близкий к нему по значению энергии ионизации иод. [c.496]

    Как связаны с номером группы типических (непереходных) элементов их наиболее распространенные степени окисления  [c.457]

    Почему соединения переходных металлов чаще обладают окраской, чем соединения типических (непереходных) элементов  [c.458]

    Элементы групп подразделяются на подгруппы. 5- и р-Эле-менты составляют так называемую главную подгруппу, или подгруппу -Л, -элементы — побочную, или подгруппу В. Кроме того, часто в особую подгруппу так называемых типических элементов выделяют )лементы малых периодов. В последнем случае, согласно Б. В. Некрасову, элементы группы подразделяются на три подгруппы ти-тческие элементы и две подгруппы, составленные из элементов больших нериодоз. Например, IV группа периодической системы состоит 13 следующих подгрупп  [c.30]

    Заполнение р-орбиталей типические (непереходные) элементы 41)2 [c.650]

    Мы исключаем при этом из рассмотрения неоднородности, вызванные побочными причинами (плохое газораспределение, агрегация мелких частиц, малый диаметр лабораторной колонки и т. п.). На рис. 1.12 (стр. 29) были показаны некоторые типические неоднородности такой природы — канальный проскок газа (а) и поршневой режим (б). [c.47]

    Ученые, которые с недоверием относились к системе Д. И. Менделеева, пытались истолковать открытие инертных газов как удар по Периодической системе. В действительности же, эти элементы не только нашли свое место в системе, но и логически дополнили ее, заняв место между типическими металлами и типическими неметаллами (галогенами). Для них Менделеев вводит отдельную нулевую группу, которую помещает в левой части таблицы перед первой. Позже она была совмещена с 8-й группой и велся длительный спор об их альтернативности. (Как будет показано позже, спор этот был безосновательным). Компромиссно остановились на 8-й группе. В современных таблицах нулевая группа отсутствует. Считается, что проблема решена окончательно. Но это мнение ошибочно, и мы еще вернемся к данному вопросу. [c.71]

    Учитывая, что типические элементы содержат в квантовом слое восемь электронов (что и обусловливает существование восьми валентностей у химических элементов), то круг в полярных координатах делится на восемь частей (секторов). Каждый сектор соответствует валентной группе. Группы нумеруются в порядке заполнения подслоя электронами от 1 до 8. [c.157]

    Бром Вг, иод I и астат А1, имея один непарный электрон проявляют большое сходство с типическими элементами. Но при высоких степенях окисления элементы подгруппы брома существе1Ш0 отличаются от типических элементов. [c.298]

    Германий Ое, олово 5п и свинец РЬ — полные электронные аналоги. Как и у типических элементов группы, валентными у них являются 5 р -э.1ектроны. В ряду Ое — 5п — РЬ уменьшается роль внешней [c.421]

    Т1) монотонно увеличиваются атомные и ионные радиусы (см. рис. 17). Таким образом, следует ожидать, что в ряду В—Ас свойства однотипных соединений должны изменяться монотонно в противоположность ряду в—Т1. Сказанное подтверждается, например, при сопоставлении суммы первых трех энергий ионизации атомов и энта ьпий образования соединений элементов подгрупп скандия и галлия к типических элементов треть- Рис. 221. Сумма трех первых энер-ей группы (рис. 221). Как видно 1ИЙ ионизации атомов и энтальпии из рнс. 221, во всем ряду В- -Ас образования оксидов Э Оз элемен- [c.525]

    Современные формы периодической таблицы. Периоды и группы. Типические (непереходные) элементы, переходные металлы и внутренние переходные. металлы (лантаноиды и актиноиды). Семейства элементов семи.металлы, щелочные. металлы, щсло июзсмглькыс . сталли и галогены. [c.302]

    Типические элементы образуют оксиды, формулы которых можно предсказать на основании положения элементов в периодической таблице например, элементы третьего периода образуют следующие оксиды НагО, МяО, А12О3, ЗЮз, Р2О5 63 и С12О7. Оксиды элементов, находящихся в левой части таблицы, являются сильными основаниями. Для них характерно наличие больщого отрицательного заряда на атомах кислорода, и по типу связи они принадлежат к ионным соединениям. Температуры плавления этих ионных оксидов, как правило, достигают 2000°С, но многие из них разлагаются уже при более низких температурах. Они реагируют с водой с образованием основных растворов [c.321]

    В последнюю очередь заполняются три пр-орбитали, что соответствует остальной части типических элементов (подгруппы П1А-УИА), причем каждый период завершается образованием валентной конфигурации х р у блаюродных газов. [c.399]

    Типические (непереходные) злемеиты [c.424]


Смотреть страницы где упоминается термин Паи типические: [c.30]    [c.343]    [c.390]    [c.52]    [c.317]    [c.318]    [c.322]    [c.399]    [c.408]    [c.419]    [c.440]    [c.425]    [c.54]   
Избранные труды (1955) -- [ c.105 ]




ПОИСК







© 2025 chem21.info Реклама на сайте