Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переходные металлы химические свойства

    Галлий, индий и таллий относятся к главной подгруппе III группы периодической системы элементов (разд. 35.10). В соответствии с номером группы в своих соединениях они проявляют степень окисления -ЬЗ. Возрастание устойчивости низших степеней окисления с ростом атомного номера элемента иллюстрируется на примерах соединений индия(III) (легко восстанавливающихся до металла), а также большей прочности соединений таллия(I) по сравнению с производными таллия(III). Ввиду того что между алюминием и галлием находится скандий — элемент первого переходного периода — вполне можно ожидать, что изменение физических и даже химических свойств этих элементов будет происходить не вполне закономерно. Действительно, обращает на себя внимание очень низкая температура плавления галлия (29,78 °С). Это обусловливает, в частности, его применение в качестве запорной жидкости при измерениях объема газа, а также в качестве теплообменника в ядерных реакторах. Высокая температура кипения (2344°С) позволяет использовать галлий для наполнения высокотемпературных термометров. Свойства галлия и индия часто рассматривают совместно с алюминием. Так, их гидрооксиды растворяются с образованием гидроксокомплексов (опыт I) при более высоких значениях pH, чем остальные М(ОН)з. Гидратированные ионы Мз+ этой [c.590]


    Например, для всех растений жизненно важное значение имеет зеленый координационный комплекс магния, известный под названием хлорофилла. Комбинация магния и координированных вокруг него групп придает хлорофиллу электронные свойства, которыми не обладает данный металл или его ион в частности, хлорофилл способен поглощать видимый свет и использовать его энергию для химического синтеза. Все организмы, которые дышат кислородом, нуждаются в цитохромах, координационных соединениях железа, которые играют важную роль в процессах расщепления и сгорания пищи, а также в накоплении высвобождающейся при этом энергии. Более сложные организмы нуждаются в гемоглобине-еще одном комплексе железа благодаря координированным к железу группам гемоглобин связывает молекулы кислорода, не окисляясь при этом. Многие области биохимии на самом деле представляют собой не что иное, как прикладную химию координационных соединений переходных металлов. В данной главе мы познакомимся со строением и свойствами некоторых координационных соединений. [c.205]

    Известны соединения меди в степенях окисления +1, +2 и +3. Последние, однако, малочисленны и ограничиваются простми и сложными оксидами и фторидами. Гораздо более распространены соединения меди (I) и меди (II). Соединения одновалентной меди менее устойчивы и похожи на аналогичные соединения серебра и золота (I). Соли двухвалентной меди по свойствам гораздо ближе к солям других двухзарядпых катионов переходных металлов. Эти особенности меди неразрывно связаны с ее электронным строением. Основное состояние атома меди 3< 4з обусловлено устойчивостью заполненной а -оболочки (ср. с атомом хрома), однако первое возбу кденное состояние 3d 4s превышает основное по энергии всего на 1,4 эВ (около 125 кДж/моль). Поэтому в химических соединениях проявляются в одинаковой мере оба состояния, дающие начало двум рядам соединений меди (I) и (II). [c.159]

    Десять / -элементов, начиная со скандия и кончая цинком, принадлежат к переходным элементам. Особенность построения электронных оболочек этих элементов по сравнению с предшествующими (з- и р-элементами) заключается в том, что при переходе к каждому последующему -элементу новый электрон появляется не на внешней (п = 4), а на второй снаружи (тг = 3) электронной оболочке. У атомов всех переходных элементов внешняя электронная оболочка образована двумя з-электронами. Существуют -элементы (например, хром, молибден, элементы подгруппы меди), у атомов которых во внешнем электронном слое имеется только один 5-электрон. Причины этих отклонений от типичного порядка заполнения электронных энергетических подуровней рассмотрены в конце раздела. В связи с этим важно отметить, что химические свойства элементов в первую очередь определяются структурой внешней электронной оболочки их атомов и лишь в меньшей степени зависят от строения предшествующих (внутренних) электронных оболочек. Поэтому химические свойства -элементов с увеличением атомного номера изменяются не так резко, как свойства в- и р-элементов. Все -элементы принадлежат к металлам, тогда как заполнение внешнего р-подуровня приводит к переходу от металла к типичному неметаллу [c.68]


    Эти два соединения, хлорофилл и гем, играют важнейшую роль в сложном механизме поглощения солнечной энергии и ее превращении для использования живыми организмами. Мы уже знаем, что характерным свойством комплексов переходных металлов является наличие нескольких близко расположенных -уровней, что позволяет им поглощать свет в видимой области спектра и придает окраску. Порфириновый цикл вокруг иона Mg в молекуле хлорофилла выполняет такую же роль. Хлорофилл в растениях поглощает фотоны видимого света и переходит в возбужденное электронное состояние (рис. 20-22). Эта энергия возбуждения может инициировать цепь химических реакций, приводящих в конце концов к образованию сахаров из диоксида углерода и воды  [c.255]

    В данной главе обсуждается важный класс соединений, включающих переходные металлы. Помимо описания свойств координационных комплексных соединений и их роли в биологических системах в учебнике содержится материал по номенклатуре, типам изомерии, теории химической связи и равновесиям комплексообразования. Усвоение правил систематической номенклатуры и возможных проявлений изомерии в этих, по существу, неорганических соединениях должно помочь студентам в их последующем изучении органической химии. Материал по химической связи в координационных соединениях и равновесиям комплексообразования может рассматриваться как повторение, иллюстрация и расширение предшествующего прохождения этих тем. [c.581]

    Самые внещние s- и р-электроны ответственны за важнейшие химические свойства атомов в случае типических элементов они называются валентными электронами. Орбитали d- и /-типа глубже погружены в общее электронное облако атома. Заселение этих орбиталей в атомах переходных металлов и внутренних переходных металлов (лантаноидов и актиноидов) оказывает меньшее влияние на химические свойства. Все же d-электроны определенным образом влияют на химические свойства переходных металлов, и в таких элементах валентными считаются электроны на внешних d-, S- и р-орбиталях. [c.408]

    Многие соединения платины, кобальта и других переходных металлов имеют необычные эмпирические формулы и часто ярко окрашены. Они называются координационными соединениями. Их главным отличительным признаком является наличие двух, четырех, пяти, шести, а иногда большего числа химических групп, расположенных геометрически правильно вокруг иона металла. Такими группами могут быть нейтральные молекулы, катионы или анионы. Каждая группа может представлять собой независимую структурную единицу, но нередки и такие случаи, когда все группы связаны в одну длинную, гибкую молекулу, свернувшуюся вокруг атома металла. Координированные группы сушественно изменяют химические свойства металла. Окраска таких соединений позволяет судить об их электронных энергетических уровнях. [c.205]

    В последние годы, в связи с возрастающей потребностью нефтегазодобывающих предприятий в качественных и доступных по своей стоимости средствах защиты металлического оборудования от коррозионного разрушения, возникают предпосылки к активному поиску сырья, пригодного для создания на его основе не дорогих, но вместе с тем высокоэффективных ингибиторов коррозии. Диапазон органических соединений, используемых для этой цели, весьма широк. Особого внимания, с нашей точки зрения, заслуживают соединения, содержащие ацетальный фрагмент, соединения аминного типа (амины, имидазолины, амиды и их производные), кетосульфиды, синтетические жирные кислоты, а также комплексы на основе триазолов, содержащие соли переходных металлов. Эффективность всех этих соединений во многом п )едопределяется склонностью к адсорбции на металле и способностью к формированию на поверхности защитных апенок с высокими барьерными свойствами. Кроме того, многие из этих соединений являются дешевыми и не находящими квалифицированного использования продуктами производств химической и нефтеперерабатывающей промышленности. В частности, при производстве многих катализаторов, используемых в нефтехимических процессах, от 3 до 5 % целевого продукта составляют магериалы, которые содержат соли переходных металлов. Отработанные катализаторы не подлежат регенерации, поэтому одним из возможных путей их утилизации является применение в качестве недорогого сырья для производства ингибиторов. [c.286]

    Последний в периодической системе седьмой период начинается аналогично шестому периоду. Сначала у франция, Рг, и радия, Яа, происходит заполнение 7. -орбиталей, затем следуют внутренние переходные металлы от актиния, Ас, до нобелия, N0 (нерегулярное заполнение их /- и ( -орбита-лей показано на рис. 9-3), и, наконец, с лоуренсия, Ьг, начинается четвертый ряд переходных металлов. У актиноидов наблюдается больше отклонений от идеализированной схемы заселения сначала /- и затем ( -орбиталей, чем у лантаноидов (см. рис. 9-3), и поэтому первые несколько актиноидных элементов обнаруживают большее разнообразие химических свойств, чем соответствующие лантаноиды. [c.399]


    Хотя способность образовывать комплексы присуща ионам всех металлов, наиболее многочисленные и интересные комплексы образуют переходные элементы. Уже давно стало понятно, что магнитные свойства и окраска комплексов переходных металлов связаны с наличием a-электронов на атомных орбиталях металла. В данном. разделе мы рассмотрим модель химической связи в комплексах переходных металлов, носящую название теории кристаллического поля такая модель очень хорошо объясняет наблюдаемые свойства этих интересных веществ. [c.390]

    Важнейшим проявлением специфики электронного строения и вытекающих отсюда химических свойств платиновых элементов является их склонность к образованию комплексных соединений. Элементы-металлы других групп периодической системы, особенно поливалентные элементы переходных рядов, также дают комплексные соединения той или иной устойчивости практически со всеми известными лигандами. Спецификой комплексных соединений платиновых элементов и прежде всего наиболее изученных комплексов платины и палладия является высокая прочность ковалентной связи, обусловливающая кинетическую инертность этих соединений. Последнее даже делает невозможным определение обычными методами такой важной характеристики комплекса, как его /Сует- Обмен лигандами внутри комплекса и с лигандами из окружающей среды также затруднен. Это позволяет конструировать, например, октаэдрические комплексы платины (IV), в которых все шесть лигандов различны. Такие системы могут существовать без изменения во времени состава как в растворах, так и в твердом состоянии. Мы уже отмечали, что, напротив, осуществить синтез столь раз-нолигандмых комплексов для элементов-металлов, образующих пре- [c.152]

    Мы знаем, что в пределах одного периода у элементов главных подгрупп, т. е. у я- и р-элементов, с возрастанием их порядкового номера число электронов во внешнем электронном слое атомов возрастает, что приводит к довольно быстрому переходу от типичных металлов к типичным неметаллам. У переходных элементов возрастание порядкового номера не сопровождается существенным изменением структуры внешнего электронного слоя поэтому химические свойства этих элементов изменяются в периоде хотя и закономерно, по гораздо менее резко, чем у элементов главных подгрупп. [c.647]

    Наиболее устойчивые элементы - благородные газы-располагаются в последовательном ряду элементов с возрастающими порядковыми номерами с интервалами 2, 8, 8, 18, 18 и 32. Зная эти интервалы и наиболее важные сходства в свойствах элементов, можно построить периодическую таблицу, в которой сходные элементы располагаются друг под другом в вертикальных колонках - группах, а химические свойства элементов закономерно изменяются вдоль горизонтальных рядов-периодов. Полную, длиннопериодную форму периодической таблицы можно Представить в компактной, свернутой форме, наглядно иллюстрирующей возможность разбиения всех элементов на три категории типические (непереходные) элементы, для которых характерно значительное изменение свойств внутри периодов переходные металлы, более сходные между собой по свойствам, и внутренние переходные металлы с чрезвычайно близкими свойствами. [c.323]

    Из тех данных, с которыми мы познакомились при характеристике типов связи, следует, что специфика химической связи является важнейшим фактором, определяющим физико-химические свойства веществ (см. 5.10). Так, комплекс свойств металлических тел глубоко взаимосвязан с металлической связью. Многие свойства сплавов и соединений металлов d- и /-элементов (гидридов, бори-дов, карбидов, нитридов, оксидов и др.) не могут рассматриваться без учета возможной у них доли металлической связи. Сравнительно легко отличить свойства соединений с преобладанием ковалентной или ионной связи. К соединениям ковалентного типа относятся углеводороды, разнообразные другие органические вещества, СиО,, P I3, P I5 и т. п. Значительная доля ковалентной связи содержится в молекулах галогенидов, оксидах и сульфидах переходных металлов. [c.124]

    Литий занимает особое положение среди щелочных металлов, являясь переходным по химическим свойствам тс элементам главной подгруппы II группы периодической системы элементов. Подтверждение тому — трудная растворимость карбоната, фосфата и фторида лития, а также способность к образованию двойных и типично комплексных соединений, отсутствующая у других щелочных металлов. Наибольшее сходство из-за близости ионных радиусов наблюдается у соединений лития и магния, которые равны 0,78 и 0,74 А соответственно, что обусловливает трудность их разделения [368]. [c.12]

    Характерной особенностью переходных металлов является незавершенность их электронных (1 —оболочек, определяющая их специфические химические (переменная валентность, склонность к комплексообразованию), многие физические (образование кристаллов металлического типа, работа выхода электрона из металла, электропроводимость, магнитные свойства и др.) и каталитические свойства. [c.93]

    После этого заполняются наиболее глубоко погруженные в атомное электронное облако (и — 2)/-орбитали, если они имеются. Такие орбитали существуют только при (и — 2) > 3, т.е. лишь в шестом и седьмом периодах. Соответствующие элементы обладают практически одинаковыми валентными электронными структурами и, следовательно, очень близкими химическими свойствами и относятся к внутренним переходным металлам (лантаноидам или актиноидам). [c.399]

    Существует более компактная форма периодической таблицы, которая нагляднее показывает относительное изменение свойств соседних элементов (рис. 7-4). Закономерности изменения химических свойств могут быть легче поняты, если исследовать только типические элементы, рассматривая переходные металлы отдельно как особый случай и вообще оставляя в стороне вопрос о внутренних переходных металлах. В такой таблице вертикальные колонки называются группами и группы типических элементов нумеруются от 1А до УПА, а группа инертных (благородных) газов счи- [c.316]

    Такое глубокое изменение свойств, выявляемое норой уже визуально, заставило авторов первых работ по гидридам считать гидриды большинства переходных металлов химическими соединениями и приписывать им постоянный состав стехиометрических соединений. Выявившийся затем при более точных измерениях переменный их состав тем более был тяжелым испытанием для признания гидридов настоящими химическими соединениями. [c.164]

    Выше, в главе I, была дана общая характеристика комплексных соединений. Здесь мы рассмотрим кратко образование и свойства химических связей в комплексах переходных элементов (см. также раздел И 1.7), ограничиваясь комплексами с координационными числами 4 и 6, так как именно такие числа характерны для подавляющего большинства известных в настоящее время комплексов. В соединениях вида MLiL2...L , где М — атом или ион переходного металла, а L — лиганд, т. е. атом или группа атомов, непосредственно связанная с центральным атомом М комплекса, число лигандов п равно 4 и 6. Обычно четыре лиганда располагаются вокруг центрального атома или в одной плоскости (рис. И 1.39, а), или в вершинах тетраэдра (рис. ili.39, б , шесть лигандов располагаются в вершинах октаэдра (рис. 1И.39, е). [c.209]

    Данная глава представляет собой краткое введение в обширную область химии, которая посвящена комплексным соединениям переходных металлов. Многообразие и трудность интерпретации химических свойств этих соединений обусловлены наличием у них тесно расположенных энергетических уровней, связанных с -орбиталями металла. Путь к пониманию химии переходных металлов заключается в объяснении того, каким образом лиганды возмущают эти энергетические уровни металла. Теория валентных связей и теория кристаллического поля частично объясняют этот эффект, но в настоящее время наиболее плодотворной является теория поля лигандов. [c.246]

    И ИХ свойств. Развитие представлений о химической связи в комплексных соединениях переходных металлов прошло четыре стадии. Оно началось с простейшей электростатической теории, которую сменила теория валентных связей, или локализованных молекулярных орбиталей в дальнейшем появилась теория кристаллического поля и, наконец, теория поля лигандов, или делокализованных молекулярных орбиталей. Каждая из этих теорий стала развитием предьщушей. Их последовательное рассмотрение является хорошим способом проследить за развитием представлений о химической связи и дает возможность показать, что одни и те же физические факты можно объяснить в рамках различных и на первый взгляд противоположных предположений. [c.223]

    Почему химические свойства переходных металлов изменяются в меньшей Степени, чем у типических (непереходных) элементов  [c.409]

    Химические свойства внутренних переходных металлов от церия, Се, [c.398]

    Германиды во многом напоминают силиды металлов, проявляя свойства интерметаллических соединений. Только немногие германиды особенно активных металлов разлагаются водой или разбавленными кислотами. Большинство л<е германидов, характеризующихся составом, ие соответствующим обычным валентностям металлов, отлича.ются твердостью, тугоплавкостью и химической инертностью, Германиды переходных металлов имеют металлический блеск и довольно высокую электрическую проводимость. [c.364]

    У этого класса элементов все уровни, кроме внешнего, заполнены-Сюда относятся элементы, атомы которых во внешнем слое имеют от до /гз пр -электронов. В этом классе, если строго придерживаться указанного выше электронного распределения, будет 44 члена, включая элементы подгрупп меди и цинка. Некоторые авторы предпочитают относить последние шесть элементов к переходным вследствие сходства их по химическим и физическим свойствам с переходными элементами. За это говорят некоторые веские аргументы, особенно, если принять во внимание химию элементов подгруппы меди в их высшей степени окисления. Химические свойства элементов этого класса в большой степени определяются стремлением их атомов получить, отдать или обобщить электроны таким образом, чтобы приобрести электронную конфигурацию инертного газа с большим или меньшим порядковым номером или так называемую конфигурацию псевдоинертного газа п — К этому классу относятся многие металлы и [c.104]

    Исследования магнитных свойств и окраски комплексов переходных металлов сыграли важную роль в создании различных теорий химической связи координационных соединений. Теория кристаллического поля успешно объясняет многие свойства координационных соединений. В рамках этой теории взаимодействие между ионом металла и лигандами рассматривается как электростатическое. Лиганды создают электрическое поле, которое вызывает расщепление энергетических уровней -орбиталей металла. Спектрохи-мический ряд лигандов соответствует их нарастающей способности расщеплять энергетические уровни -орбиталей в октаэдрических комплексах. [c.401]

    Галидами называют соединения галогенов с металлами и неметаллами, в которых степень окисления галогенов равна —1. Тип химической связи, структура и свойства галидов зависят от химической природы как галогена, так и элемента, непосредственно с ним соединенного. Галиды щелочных металлов (за исключением — Г), щелочноземельных металлов (за исключением Ве — Г), большинства лантаноидов и некоторых актиноидов относятся к ионным соединениям. В галидах неметаллов и переходные металлов смешанные ионноковалентные связи. Галиды щелочных и щелочноземельных металлов — кристаллические вещества, не подвергающие-" ся гидролизу, так как представляют собой соли сильных кислот и сильных оснований. Галиды получают непосредственным д взаимодействием галогенов с металлом. [c.242]

    Наиболее активными, избирательными и технически пригодными катализаторами являются окислы или сульфиды переходных металлов, тогда как, исходя из представлений примерной теории, каталитическими свойствами должны обладать многие полупроводники. Согласно представлениям этой теории, различного типа модифицирование должно оказывать большее влияние на каталитические свойства полупроводника, чем его первоначальный химический состав. На самом деле наблюдается обратное. [c.26]

    В связи с этим нам представлялось интересным исследовать структуру, строение и физико-химические, и прикладные свойства органонитрильных комплексов переходных металлов [23], перспективных в качестве эффектнвнь х катализаторов и присадок к смазочным маслам. [c.148]

    Теория кристаллического поля позволяет также понять магнитные и некоторые важные химические свойства ионов переходных металлов. Прежде чем перейти к обсуждению этих свойств, полезно ввести представление об энергии стабилизации кристал- [c.394]

    Мы убедились, что, исходя из теории кристаллического поля, можно объяснить ряд свойств комплексов переходных металлов. С помощью этой теории можно объяснить многие другие факты помимо рассмотренных нами. Однако получены данные, свидетельствующие о том, что химическая связь между ионами переходных металлов и ли-г андами имеет частично ковалентный характер. Для более строгого описания химической связи в комплексах можно использовать теорию молекулярных орбиталей (см. разд. 8.5 и 8.6). Однако применение теории молекулярных орбиталей к координа- [c.399]

    Трудами Сивертса (за период 1907—1941 гг.), Панета [3], И. И. Жукова [4] и других ученых давно уже охарактеризованы основные черты химической природы гидридов переходных металлов, их свойства и важное значение в установлении закономерностей периодической системы элементов [5]. Однако все эти вопросы в имеющейся литературе излагаются если и последовательно, то недостаточно подробно и разносторонне. [c.5]

    Исследовано влияние добавок соединений переходных металлов на пористые характеристики УВМ, активированных водяным паром и СО2. Наиболее существенные изменения в пористой структуре и химическом состоянии поверхности наблюдаются у активированных УВМ, полученных в присутствии V и Мо, при этом отмечается заметное развитие супермикропористой и мезопористой сфуктур, а также увеличение концентрации кислотных поверхностных групп. Повышенное содержание кислотных групп обусловливает проявление полученными УВМ катионообменньк свойств. Статическая обменная емкость по [c.119]

    Периодический закон — научная основа и метод многочисленных исследований. Назовем некоторые направления (темы), которые еще ждут дальнейших исследований. Это работы но теории химической связи и электронной структуры молекул химия комплексных соединений, включая редкоземельные элементы, а также соединения, имеющие полупроводниковый характер получение гю-лупроводниковых материалов, развитие химии твердого тела, синтез твердых материалов с заданным составом, структурой и свойствами поиски новых материалов на основе твердых растворов изоморфных боридов, карбидов, нитридов и оксидов переходных металлов IV и V групп получение сплавов и катализаторов на основе переходных элементов синтез неорганических веществ, включая неорганические полимеры получение веществ высокой [c.427]

    Как проявление неметаллических химических свойств можно рассматривать и склонность ряда элементов-металлов, особенно переходных и ностпереходных , к завершению электронной оболочки (о или р) путем ковалентного комплексообразования. В таких случаях могут возникать анионы типа МПО4 , М0О42-. Однако и образование катионных ковалентных комплексов типа [Со(КНз)б] + также решает эти задачи. [c.247]


Смотреть страницы где упоминается термин Переходные металлы химические свойства: [c.24]    [c.316]    [c.398]    [c.400]    [c.457]    [c.208]    [c.387]    [c.415]    [c.85]    [c.63]    [c.253]   
Общая химия (1964) -- [ c.418 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы Химические свойства

Металлы переходные

Металлы свойства

Металлы химические



© 2024 chem21.info Реклама на сайте