Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород длина связи в молекуле

    Экспериментально установлено, что молекула бензола — плоская, атомы углерода образуют правильный шестичленный цикл ( ССС = 120°). Длина связи С—С в бензоле, промежуточная между длинами ординарной и двойной связей (см. табл. 9), формула Кекуле с чередующимися и разными по длине связями С—С и С=С не отвечает опыту. Гипотетический бензол Кекуле должен был бы так же активно присоединять молекулы галогенов по месту двойных связей, как непредельные углеводороды, что не наблюдается. Для бензола, напротив, характерны реакции замещения водорода на галоген. Но и здесь факты противоречат формуле Кекуле. В соответствии с ней возможно два о-дихлорбензола [c.115]


    Однако это еще не окончательная картина электронного строения бензола, потому что экспериментально наблюдаемая длина связи С—С (1,390 А) оказывается значительно меньше длины простой связи С—С (1,54 А). У каждого атома углерода остается одна негибридизованная 2р-орбиталь, ориентированная перпендикулярно плоскости гексагонального кольца (рис. 13-23). В молекуле бензола 30 валентных электронов по 4 от каждого из шести атомов углерода и по 1 от каждого из шести атомов водорода. Из них 12 электронов используются для образования шести простых связей С—Н и 12-для образования шести простых а-связей С—С. Остаются еше шесть электронов и шесть неиспользованных в а-связях р-орбиталей атомов углерода. Возможно, эти орбитали используются попарно для образования еще трех ковалентных связей. Но как выбрать такие три пары  [c.573]

    Расстояние между ядрами двух связанных между собой атомов (например, в молекулах Н или Na С1 ) называется длиной связи. В молекуле водорода длина связи равна 0,74 А. Каждый ром водорода в Hj может быть охарактеризован атомным радиусом 0,37 А. На рис. 9-5 схематически представлены размеры атомов и ионов некоторых типических элементов и указаны их средние радиусы эти значения определены из экспериментально наблюдаемых длин связи во многих молекулах. Атомные радиусы в большинстве случаев сопоставлены с размером соответствующей замкнутой оболочки положительного или отрицательного иона элемента. [c.403]

    Метод валентных связей. В 1927 г. на базе квантовомеханических представлений были впервые рассчитаны основные параметры молекулы водорода — длина связи [c.107]

    Энергия и длина водородной связи в значительной мере определяются электрическим моментом диполя связи и размерами атома. Длина связи уменьшается, а энергия водородной связи возрастает с увеличением разности ЭО у атомов X и V и соответственно электрического момента диполя связи X—Н и с уменьшением размера атома V. Например, у молекул воды, у которых разница ЭО кислорода и водорода равна 0,5, длины связи в триаде О—Н---0 равны 0,096 нм для О—Н и 0,204 нм для Н---0, энергия водородной связи Н---0 составляет 21,51 кДж/моль. У молекул НР, у которых разница ЭО фтора с водородом равна [c.59]

    Зная экспериментальные значения электрического момента диполя, можно рассчитать полярность связей и эффективные заряды атомов. В простейшем случае двухатомных молекул можно приближенно считать, что центры тяжести зарядов совпадают с ядрами, т. е. I равно межъядерному расстоянию или длине связи. Так, в молекуле НС1 НС1 = 0,127 нм. Если бы хлорид водорода был чисто ионным соединением q равно заряду электрона), то его электрический момент диполя был бы равен [c.85]


    Молекула НГ диамагнитна. Формальный порядок связи в ней равен единице. Экспериментальная энергия связи составляет 569 кДж/моль, это заметно больше, чем у Н2 (432 кДж/моль) и Гг (159 кДж/моль), как и следовало ожидать, поскольку связь усилена электростатическим взаимодействием между зарядами на атомах фтора и водорода. Длина связи НГ (0,092 нм) имеет промежуточное значение между длинами связей Н2 (0,074 нм) и Гг (0,128 нм). [c.52]

    Проанализировать роль перечисленных факторов в объяснении полимерной структуры гидрида бериллия в молекуле ВеНг атом бериллия координационно ненасыщен связь Ве—Н имеет ковалентный характер вследствие малых атомных радиусов бериллия и водорода длина связи Ве—Н невелика молекула ВеНг электронодефицитна. [c.189]

    Экспериментально установлено, что в молекуле воды НгО расстояние между ядрами водорода и кислорода составляет 0,096 нм. Межъядерное расстояние между химически связанными атомами называют длиной связи. [c.42]

    На рис. 12-2 показано, как зависит от расстояния между двумя атомами Н потенциальная энергия молекулы Нз- Сушествует промежуточное равновесное расстояние, на котором силы притяжения и отталкивания уравновешиваются. Если атомы раздвигаются, силы притяжения сводят их снова. Если же они слишком сближаются, силы отталкивания возвращают их на место. Поведение двух атомов водорода в молекуле Н таково, как если бы они были связаны пружинкой. Наличие положения равновесия как раз и имеется в виду, когда говорят о длине связи (см. рис. 12-1, Э и 12-2). [c.512]

    Длины связей определяются размером реагирующих атомов и степенью перекрывания их электронных облаков, например, длины связей в молекулах НХ равны (нм) Н—Р 0,092 Н—С1 0,128 Н—Вг 0,142 Н—I 0,162. Таким образом, по мере увеличения атомного номера и соответственно размера атома галогена длина химической связи его с водородом возрастает. [c.39]

    В 1927 г. немецкие ученые У. Гейт-лер и Ф.Лондон провели квантовомеханический расчет взаимодействия атомов водорода при образовании молекулы На-В результате приближенного решения уравнения Шредингера они вывели зависимость потенциальной энергии системы от расстояния между ядрами атомов водорода (рис. 13). При сближении двух атомов электроны с антипараллельными спинами притягиваются одновременно двумя протонами, поэтому потенциальная энергия системы уменьшается (кривая 1). При сближении двух атомов действуют не только силы притяжения, но и силы отталкивания. Два электрона отталкиваются друг от друга, то же наблюдается и для двух протонов. Силы отталкивания начинают преобладать при очень малых расстояниях между атомами. При некотором расстоянии между ядрами энергия системы минимальна. Система становится наиболее устойчивой, возникает химическая связь и образуется молекула водорода. Расстояние между ядрами в молекуле водорода Го (длина связи) равно 0,074 нм. При сближении атомов, у электронов которых спины параллельны, наблюдается только их отталкивание и энергия системы возрастает (кривая 2). Квантовомеханические расчеты показывают, что электронная плотность в системе при взаимодействии двух атомов водорода, имеющих антипараллельные спины электронов, максимальна в области, лежащей между ядрами [c.42]

    Эта независимость двухцентровых орбиталей удобна для описания Направленности четырех связей С—Н в метане, их равной длины и аддитивности энергии связи молекулы. Метан ведет себя так, как если бы в его молекуле существовали четыре независимые связи С—Н, каждая из которых бы осуществлялась локализованной парой электронов, по одному с орбитали атома водорода и по одному с гибридной орбитали атома углерода. Однако в действительности электроны делокализованы, а гибридизация — не физическая реальность, а удобный математический прием. [c.199]

    Долгое время необычные свойства воды были загадкой для ученых. Выяснилось, что они в основном обусловлены тремя причинами полярным характером молекул, наличием неподеленных пар электронов у атомов кислорода и образованием водородных связей. Молекула воды (рис. X1V.2, а) может быть представлена в виде равнобедренного треугольника, в вершине которого расположен атом кислорода, а в основании — два протона (рис. XIV.2, б). Две пары электронов обобществлены между протонами и атомом кислорода, а две пары неподеленных электронов ориентированы по другую сторону кислорода. Длина связи О—И составляет 96 нм, а угол между связями 105°. Связь О—Н имеет полярный характер, молекула воды также полярна. Благодаря полярности вода хорошо растворяет полярные жидкости и соединения с ионными связями. Наличие неподеленных пар электронов у кислорода и смещение обобществленных электронных пар от атомов водорода [c.371]


    Следовательно, чтобы молекула Нз реально существовала, необходимо, чтобы силы притяжения и отталкивания уравновешивали друг друга. При этом условии происходит взаимное перекрывание атомных орбиталей с антипараллельными спинами электронов. В области перекрывания, которое находится между ядрами, возникает повышенная электронная плотность. Она притягивает к себе оба ядра атомов водорода. При этом образуется достаточно прочная молекула, так как такое состояние отвечает минимуму энергии и определенной длине связи (рис. 9). [c.62]

    Межъядерное расстояние между химически связанными атомами называется длиной связи. Например, в молекуле Н2О расстояние между ядрами атомов водорода и кислорода составляет 0,096 нм. Угол между воображаемыми прямыми, проходящими через ядра двух химически взаимосвязанных соседних атомов, называется валентным углом. Так, в молекуле воды этот угол равен 104,5°  [c.65]

    Спиновая теория валентности (метод электронных пар). В 1927 г. на базе квантовомеханических представлений были впервые рассчитаны основные параметры молекул водорода— длина связи (расстояние между ядрами атомов водорода) и энергия связи Н—Н. Найденные значения (гн-н = 0,87 А и н-н = 72,3 ктл1моль) впоследст- [c.87]

    В молекуле РНРг (14), отличающейся от РРз тем, что один атом фтора заменен водородом, длины связей, как и предполагалось, увеличиваются. В этом случае из-за [c.170]

    Табл. 6.2, основанная на данных работы Гордона [37], дает представление о степени соответствия расчетных и экспериментальных данных (длины связей указаны с точностью до сотых долей А для рассчитанных валентных углов приведены экстремальные значения при вращении ссылки на эксперимент имеются в оригинальной работе). Как видно из приведенных данных, длины связей предсказываются со средней точностью 0,1 А, валентные углы — с точностью порядка нескольких градусов, хотя в некоторых случаях расхождение расчета и опыта слишком велико (например, длина связи О—О и валентный угол НОО в молекуле перекиси водорода, длина связи О—Р в молекуле РзОа). [c.297]

    В каждом периоде периодической таблицы наблюдается общая тенденция к возрастанию энергии ионизации с увеличением порядкового номера элемента. Сродство к электрону оказывается наибольшим у кислорода и галогенов. Атомы с устойчивыми орбитальными конфигурациями.(s , s p , s p ) имеют очень небольшое (часто отрицательное) сродство к электрону. Расстояние между ядрами двух связанных атомов называется длиной связи. Атомный радиус водорода Н равен половине длины связи в молекуле Hj- В каждом периоде периодической таблицы наблюдается в общем закономерное уменьшение атомного радиуса с ростом порядкового номера элемента. Электроотрицательность представляет собой меру притяжения атомом электронов, участвующих в образовании связи с другим атомом. При соединении атомов с си.пьно отличающейся электроотрицательностью происходит перенос электронов и возникает ионная связь атомы с приблизительно одинаковой электроотрицательностью обобществляют электроны, участвующие s сбразовашг. ковалентной связи. Между атомами типа Н и F с умеренной разностью электроотрицательностей образуется связь с частично ионным характером. [c.408]

    Пространственное расположение sp -орбиталей в молекуле этана показано на рис. 13-18,а экспериментально установленные значения длин связей и валентных углов показаны на рис. 13-18,6. Молекулы пропана (СНз— Hj—СН3), бутана ( Hj— Hj— Hj—СН3) и большого класса углеводородов с линейными и разветвленными цепочками атомов углерода, включая различные фракции керосина, бензина и парафинового воска, могут быть построены при помощи тетраэдрически гибридизованных орбиталей углеродных атомов, которые перекрываются друг с другом и с 15-орбиталями атомов водорода. Подобные углеводороды называются насыщенными, потому что в них каждый атом углерода использует все четыре валентные орбитали для соединения с другими атомами посредством а-связей. [c.566]

    Примером такой реакции является реакция (111.40) прямого распада бромистого этила на бромистый водород и этилен в газовой фазе. Эта реакция имеет энергию активации 53,7 ккал/моль, в то время как ее тепловой эффект всего 2 ккал/моль. Следовательно, активационный барьер реакции составляет 34,5 ккал/моль. Столь высокий барьер, по-видимому, обусловлен тем, что в активированном комплексе сильно искажаются валентные углы и длины связей. Атомы И и Вг в неискаженной молекуле СоНаВг не могут оказаться на расстоянии, меньшем 2,54 А (рис. 34), в то время как в конце реакции в молекуле НВг они должны сблизиться до расстояния 1,41 А. Поэтому в активированном комплексе должны быть сильно искажены углы Н—С—С и С—С—Вг, а также длины связей С—Н и С—Вг. [c.108]

    Прямые доказательства существования иона Н3О+ получены при исследовании моногидратов серной, азотной, галогеноводородных и хлорной кислот методом протонного ядерного магнитного резонанса и рентгеноструктурным методом, а также при исследовании кислых растворов методами ИК-спектроскопии и измерения молярной рефракции. Ион Н3О+ представляет собой сильно сплюснутую пирамиду, в вершине которой расположен атом О углы при вершине равны 115°, длина связи О—Н составляет 0,102 нм, а расстояние Н—Н 0,172 нм. Ион Н3О+ окружен гидратной оболочкой, причем в первичной гидратационной сфере содержится, по-видимому, 3—4 молекулы воды. Чаще всего комплексу из Н3О+ и молекул воды приписывают формулу Н9О4+. Подвижность такого кластера вряд ли может превысить подвижности гидратированных ионов К+ и С1-. Поэтому для объяснения высокой подвижности ионов водорода предполагают непосредственный перескок протона от частицы Н3О+ к ориентированной соответствующим образом соседней молекуле воды  [c.84]

    В качестве примера четырехатомной частицы рассмотрим молекулу Стр н е молекулы пероксида водорода НРа. струк-турная формула которого может быть ный угол представлена в виде Н—О—О—Н (рис. 36). Из 12 координат, определяющих положение четырех ядер, шесть характеризуют их взаимное положение. Из шести величин, необходимых для описания геометрии молекулы, в качестве трех можно выбрать длины связей (двух связей О—Н и одной связи 0—0), в качестве еще двух — валентные углы при двух атомах О. Последняя, шестая величина должна характеризовать взаимную ориентацию двух связей О—Н. Это делается с помощью двугранного (торсионного) угла, образуемого двумя плоскостями, проходящими каждая через оба атома О и один из атомов Н. [c.93]

    Кроме длины и энергии важными характеристиками химической связи являются насыщаемость и направленность. Однако эти свойства присущи лишь ковалентной связи. Ионная связь, природа которой обусловлена ненасыщенным и пространственно симметричным электростатическим полем центрального иона, ненасыщена и не имеет какого-либо определенного направления. Насыщаемость ковалентной связи выражается в ограничении числа валентных связей, которые может дать данный атом. Например, азот притягивает три атома водорода с образованием молекул ЫНз, молекул же МН4, ЫН5 и т. д. не существует. Согласно квантово-механическим соображениям в образовании связи могут участвовать только неспаренные электроны атома число их определяет валентность элемента. В простых случаях число неспаренных электронов в атоме находится с помощью принципа Паули и правила Гунда, в более сложных рассматривается возможность гибридизации волновых функций. Направленность связей объясняет стереохимию молекул, которая начала развиваться после того как Ле-Бель и Вант-Гофф (1874) выдвинули важнейший тезис о тетраэдрическом расположении валентностей углерода. [c.18]

    Рассмотрим образование ковалентной химической связи между двумя атомами водорода (Н и Н ). При сближении атомов водорода между ними возникают разные виды взаимодействия отталкивание между ядрами, отталкивание между электронами, притяжение каждого из электрона к ядрам. Следо-вате. 1ьно, чтобы молекула реально существовала, необходимо, чтобы силы притяжения и отталкивания уравновешивали друг друга. При этом условии происходит взаимное перекрывание атомных орбиталей с антипараллельными спинами электронов. В области перекрывания, которое находится между ядрами, возникает повышенная электронная плотность. Она притягивает к себе оба ядра атомов водорода. При этом образуется достаточно прочная молекула, так как такое состояние отвечает минимуму энергии и определенной длине связи (рис. 8). [c.70]

    Ацетилен С2Н2 — первый представитель ряда алкинов С Н2 2-Молекула СдИз, согласно экспериментальным данным, линейна. Длина связи г(С = С)==1,212-10-> м, г (С—И) = 1,078 10- ° м. Резкому укорочению связи с—С по сравнению с этаном и этиленом отвечает возрастание энергии разрыва связи (С=С)=782 к Дж/моль. Согласно классическим представлениям, углерод-углеродная связь в ацетилене тройная. Водородные атомы в ацетилене способны к замещению на металл с образованием карбидов, например СаСз. Такая же способность к протонизации наблюдается у водорода при атоме С=К в других молекулах например в И—С =TSI. Это связано с накоплением высокого электронного заряда на тройной связи. [c.210]

    Однако формула Кекуле с чередующимися и разными по длине связями С—С и С = С не отвечает опыту. Гипотетический бензол Ке-тсуле должен был бы активно присоединять молекулы галогенов по месту двойных связей, как непредельные углеводороды, что не наблюдается. Для бензола, напротив, характерна реакция замещения водорода на галоген. Но и здесь факты противоречат формуле Кекуле. В соответствии с ней возможно два о-дихлорбензола  [c.226]

    Описано много примеров термических или фотохимических перегруппировок, при которых водородный атом мигрирует от одного конца системы я-связей к другому [403], хотя реакция имеет ряд геометрических ограничений. Механизм процесса пе-рициклический. В переходном состоянии водород контактирует одновременно с обоими концами цепи. Это означает, что для [1,5]- и более длинных перегруппировок молекула должна быть способна принять цисоидную конформацию. Кроме того, для [c.191]

    Последние представляют собой бесцветные жидкости с т. пл. —25 (Мп) или +13 С (Не), малорастворимые в воде, но смешивающиеся со многими органическими растворителями. Разложение их на [Э2(СО)ю и Н2] идет прн обычных условиях лишь крайне медленно, а кислотные свойства выражены очень слабо (для производного марганца констарта диссоциации равна 8-10" дипольный момент молекулы ц = 0,70). Силовые константы связей Н—Мп и Н—Не равны соответственно 1,9 и 2,0, Для длины связи Н—Мп дается значение 1,43 А. При замене водорода на метильную группу устойчивость соединений сильно повышается получаемые взаимодействием СНз1 с ЫаЭ(С0)5 производные типа СНзЭ(СО)5 представляют собой устойчивые на воздухе бесцветные кристаллы с т. пл. 95 (Мп) или 120°С (Не). Дипольный момент СНзМп(СО)5 равен 0,7-9 (в бензоле). [c.516]


Смотреть страницы где упоминается термин Водород длина связи в молекуле: [c.21]    [c.374]    [c.262]    [c.101]    [c.43]    [c.43]    [c.363]    [c.353]    [c.92]    [c.101]    [c.76]    [c.98]    [c.186]    [c.41]    [c.190]   
Конфирмации органических молекул (1974) -- [ c.26 ]




ПОИСК





Смотрите так же термины и статьи:

Водород связь в молекуле

Длина связи

Молекула длина связи

Молекулы водорода

Молекулы связь



© 2024 chem21.info Реклама на сайте