Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Валентность элементов и образование молекул

    Точно установленный состав этого соединения никак ие мог быть объяснен с точки зрения обычных представлений о валентности азота, хлора и водорода. Были известны и другие более сложные соединения, для установления природы которых первоначальное понятие о валентности оказалось явно недостаточным. Альфред Вернер (1866—1919) в 1891 г. для случаев, когда к молекулам соедииений, в которых валентность элементов была полностью насыщена, присоединялись другие молекулы, предложил понятие побочной валентности. Вслед за этим (1893) Вернер разработал координационную теорию для объяснения природы этих молекулярных соединений, которые в дальнейшем были названы комплексными соединениями. В настоящее время механизм образования химических связей в комплексных соединениях вскрыт на основе электронных представлений. Рассмотрим этот механизм на примере образования соединения аммиака с хлороводородом. [c.65]


    ПИЯХ с кислородом, следовательно, можно ожидать, что азот пятивалентен в таких соединениях, как азотная кислота ННОз и азотный ангидрид МоОд. Поскольку, однако, азот является самым типичным неметаллом среди элементов V группы и одним из наиболее характерных неметаллов вообще, связь между атомами азота и кислорода должна носить по преимуществу ковалентный характер. По теории ковалентной связи соединение атомов в. молекулы осуществляется за счет образования общих электронных пар из неспаренных электронов различных атомов. Валентность элементов равна числу неспаренных электронов у атомов соединяющихся элементов. Поскольку же максимальное число неспаренных электронов у атомов элементов второго периода не может превышать четырех, то и максимальная валентность всех элементов этого периода, включая азот, не должна быть выше четырех. [c.78]

    Эффективность присадки зависит от валентного состояния и положения элементов в молекуле присадки, наличия функциональных групп, их синергизма и других факторов. Применение фосфор-, серу-, кислород- и азотсодержащих соединений в качестве присадок к смазочным маслам тесно связано с особенностью электронной структуры этих элементов. Взаимодействие их с металлической поверхностью деталей двигателя приводит к модифицированию последней (изменению структуры) и за счет образования защитных пленок обеспечиваются противокоррозионные, противоизносные и противозадирные свойства указанных соединений в растворе масел. Кроме того, присадки, содержащие эти элементы, стабилизируют масло, обрывая цепь окисления по реакции с пер-оксидными радикалами и разрушая гидропероксиды. [c.9]

    Как известно, образование молекулы из атомов обусловлено взаимодействиями валентных электронов этих атомов. Химические связи, образующиеся в молекуле между взаимодействующими атомами, и прежде всего пространственные и энергетические характеристики этих связей, представляют собой важнейший фактор, определяющий физико-химическое поведение молекулы. Кроме того, важнейшее свойство химического элемента—валентность — определяется как число химических связей, которые его атом образует в конкретной молекуле. [c.21]

    Валентность. В учении о химической связи широко используют очень важное понятие о валентности элементов. Способность атома к образованию химических связей называют валентностью элемента. Количественной мерой валентности принято считать число разных атомов в молекуле, с которыми данный атом образует связи. Согласно методу ВС валентность элементов определяется числом содержащихся в атоме неспаренных электронов. Для з- и р-электронов — это электроны внешнего уровня, для -элементов — внешнего и предвнешнего уровней. [c.44]


    Вопросы образования молекул из атомов, строения самих молекул и природы химической связи составляют одну из наиболее важных проблем физической химии. Однако эти вопросы стали успешнее разрабатываться только после того, как была раскрыта сложная структура атома и выяснен смысл понятия валентности. В начале XIX в. в результате изучения процессов электролиза в химии возникло представление об электрической природе валентных сил. Элементам, выделяющимся на катоде, приписывался положительный заряд и положительная валентность, а элементам, выделяющимся на аноде,— отрицательный заряд и отрицательная валентность. [c.25]

    Валентность элементов, проявляющаяся в ковалентных соединениях и простых веществах, часто называют ковалентностью. Ковалентность атома равна числу электронов, затраченных им на образование электронных пар с электронами других атомов. Сколько электронов затрачено атомами на образование электронных пар, столько пар и образовалось. Поэтому ковалентность атома измеряется количеством электронных пар, связывающих его с другими атомами. Так, в молекуле метана СН4 каждый атом водорода связан с атомом углерода лишь одной электронной парой валентность водорода в метане равна 1. А атом углерода связан с присоединенными к нему атомами водорода четырьмя электронными парами ковалентность углерода в метане равна 4..  [c.80]

    Валентность — это связывающая сила элемента, оцениваемая числом атомов водорода (или его эквивалентов), с которыми атом элемента может соединиться с образованием устойчивых молекул. Хорошо известно, что валентность элемента определяется его положением в периодической системе. Атом с незаполненной внешней оболочкой стремится достичь электронной структуры инертного газа , т. е. заполнить свой внешний уровень. Существуют две принципиальные возможности достижения этого устойчивого состояния электровалентность приводит к потере или приобретению атомом электронов, в результате чего образуются заряженные частицы (ионы) с завершенными внешними оболочками при ковалентности электронная структура атома становится эквивалентной электронной конфигурации инертного газа за счет обобществления электронов. [c.14]

    Открытие сложности строения атома и его изменяемости (конец XIX и начало XX в.) вызвало к жизни целый ряд теорий химической связи и образования молекул. Было совершенно ясно, что образование химической связи идет только за счет электронов, окружающих атомное ядро, так как заряд ядра и место атома в периодической системе элементов в химических процессах не изменяются. Однако электронная теория валентности оказалась весьма сложной, и прошло много времени, прежде чем она стала современным учением о химической связи. [c.69]

    Образование устойчивой электронной конфигурации может происходить несколькими способами и приводить к молекулам (и веществам) различного строения, поэтому различают несколько типов химической связи. Таковы ионная, ковалентная и донорно-акцепторная (координационная) связи. Кроме этих видов связей существуют другие, не относящиеся непосредственно к рассмотренным электронным оболочкам. Таковы водородная и металлическая связи. Далее мы рассмотрим каждый из указанных типов связи отдельно, но прежде необходимо рассмотреть понятие валентность элементов . [c.42]

    Одиночные (или неспаренные) электроны в электронных оболочках атомов, за счет спаривания которых возникает химическая связь в молекулах, называют валентными. Число общих электронных пар, образующихся при взаимодействии атомов химических элементов, определяет их валентность. Так, два атома водорода, имеющие по одному неспаренному, т. е. валентному, электрону, при соединении в молекулу образуют одну общую пару электронов, т. е. проявляют валентность, равную единице. Схематически образование молекулы Из из двух атомов водорода можно представить следующим образом  [c.241]

    Химическое строение. До работ А. М. Бутлерова не уделялось достаточного внимания представлениям о расположении атомов в молекулах, хотя атомно-молекулярное учение уже утвердилось в химии, А. М. Бутлеров ввел представление о химическом строении — строго определенном порядке расположения атомов в молекуле. В основу теории строения была положена валентность элементов — важное свойство атомов, характеризующее способность нх к образованию химических связей. Согласно теории Бутлерова в молекулах веществ атомы соединены друг с другом в определенной последовательности в соответствии с их валентностью, т. е. молекулы имеют точное химическое строение. [c.294]

    Ввиду того что в молекулах соединений с атомной связью, образованных различными по своим свойствам элементами, вследствие смещения общих пар электронов одни атомы могут быть частично заряжены положительно, а другие отрицательно, понятие о положительной и отрицательной валентности элементов может быть распространено и на соединения с атомной связью. [c.88]


    В этот класс попадают три ряда элементов — от титана до никеля, от циркония до палладия и от гафния до платины. Они отличаются от электроположительных металлов класса 2 в пяти существенных отношениях по наличию переменной валентности, легкости образования ковалентных связей в комплексных ионах и нейтральных молекулах, окраске, парамагнетизму и каталитической активности. В своих простых анионах (образуемых редко, за исключением элементов первого переходного периода), комплексных ионах и нейтральных молекулах переходные элементы используют -электроны предпоследней оболочки. Результирующие уровни энергии оказываются гораздо ближе друг к другу, чем при использовании только 5- и р-электронов, и это является основной причиной перечисленных выше особенностей. Первые два из этих вопросов будут рассмотрены в главах 3 и 6, а проблема окраски — в гл. 12. О магнитных свойствах уже говорилось раньше. [c.62]

    Развитие представлений о X. с. В классич. теории хим. строения принималось, чго молекула образуется из атомов, имеющих нек-рое сродство к другим атомам. Количеств, мерой этого св-ва атома служило целое число единиц сродства, каждая единица к-рого при образовании молекулы должна быть использована для соединения данного атома с другими, однако у т. наз. радикалов часть единиц сродства (по формальным признакам) оказывалась неиспользованной. Характерное число единиц сродства атома данного элемента наз. валентностью, а число единиц сродства, затрачиваемое данным атомом на соединение с другим атомом,- кратностью X. с. (см. Молекула). [c.234]

    Низкие значения энергий диссоциации молекул элементов II группы обусловлены тем, что атомы этих элементов имеют замкнутую оболочку валентных электронов (s ), а образование молекул происходит за счет сил Ван-дер-Ваальса и влияния возбужденных электронных состояний этих молекул. [c.786]

    Число электронов, которые атом данного элемента может дать для образования связей с другими атомами, а следовательно, и валентность элемента определяются тем, что наружная электронная оболочка является наиболее устойчивой, когда обладает структурой из восьми электронов электронный октет), кроме первой оболочки (у водорода), для которой устойчивой является структура из двух электронов. При этом электронные пары, связывающие данные два атома, следует считать принадлежащими обоим (как одному, так и другому) атомам, что схематически показано для молекулы фтора  [c.63]

    Структура молекулы изображается структурной формулой. Так, например, структура молекулы воды изображается формулой Н —О—Н. Каждый атом кислорода связан с двумя атомами водорода, сами же атомы водорода друг с другом непосредственно не связаны. Структурная формула едкого натра Na — U — Н показывает, чти атом натрия в этой молекуле связан с атомом кислорода, а этот последний с атомом водорода непосредственной же связи между атомами натрия и водорода нет. Таким образом, структурные формулы отображают, в какой последовательности связаны между собой атомы в молекуле, но не расположение атомов в пространстве. Судя по структурной формуле воды, нельзя сказать, лежат ли все три атома в одной плоскости и на одной прямой или нет, находятся ли атомы водорода на одинаковом расстоянии от атома кислорода или один расположен поближе, а другой — подальше от кислорода и т. п. Для того чтобы найти структурную формулу соединения, недостаточно знать молекулярную формулу и валентности элементов, входящих в его состав необходимо, кроме того, тщательно и всесторонне изучить химические свойства вещества и пути его образования. [c.11]

    При образовании молекул сложных веществ на один эквивалент положительно валентного элемента или радикала приходится один эквивалент элемента или радикала, обладающего отрицательной валентностью. Например, как вычислено выше, эквивалент А1 равен 9 к. е., а эквивалент равен 48 к. е. В молекуле сульфата алюминия А12(304)з на 9 к. е. алюминия приходится 48 к. е. радикала сульфата. [c.131]

    Отличие строения атомов различных элементов от строения атомов инертных газов. Валентные электроны. Образование ионов и молекул с ковалентной и электровалентной связью. Понятие об ионизационном потенциале и сродстве к электрону. Перемена валентности элемента как окислительно-восстановительный процесс. Приемы составления уравнений окислительно-восстанови-тельных реакций электронная схема, ионное и молекулярное уравнения. Примеры окислительно-восстановительных реакций в кислой, нейтральной и щелочной среде. Окислительно-восстановительные процессы как источник электрического тока. Гальванические элементы. Нормальные окислительно-восстановительные потенциалы и их значение. Электролиз. Законы Фарадея. Электрохимический эквивалент и химический эквивалент. Расчет химических эквивалентов элементов и сложных веществ в окислительно-восстановительных реакциях. [c.73]

    Гидролиз жиров является равновесной реакцией, обратной этерификации. В результате гидролиза происходит расщепление связей в молекулах глицеридов при действии воды, причем элементы воды присоединяются по месту возникающих свободных валентностей с образованием двух структурных элементов жиров— жирных кислот и глицерина  [c.99]

    Большинство приведенных данных может быть объяснено образованием при отдаче (как и для случая с радиоактивным марганцем) заряженных радикалов, содержащих радиоактивные атомы, соединенные с кислородом. Валентность элемента при распаде молекул не меняется. Эти радикалы в некоторых случаях способны к реакциям окисления или восстановления воды с образованием радиоактивных окислов низших степеней окисления (МпО,). свободных радиоактивных изотопов (Se) или отрицательно заряженных ионов радиоактивных изотопов (СГ). Кроме того, они могут гидратироваться с образованием радиоактивной материнской молекулы. Радиоактивная материнская молекула может получиться также в результате изотопного обмена. [c.232]

    Каковы основные [юложения ттории валентных связей По каким механизмам возможно образование ковалент юй связи Как оценить валентность элементов в молекуле Чем определяются налентные возможности элемента От че1о зависит пространственная конфигурация молекул В чем сущность модели гибридизации орбиталей центрального атома молекулы и модели локализованных электронных пар  [c.63]

    Введение. Вопросы химической связи образования молекул из атомов и строения самих молекул относятся к важнейшим вопросам химии и давно привлекают к себе внимание. Однако пока не была раскрыта сложная структура атома и атомы считались неделимыми, нельзя было достичь правильного понимания этих вопросов. В течение прошлого века был накоплен весьма ценный экспериментальный материал, сделаны некоторые очень важные обобщения, физический смысл которых стал ясен только в наше время. Из них следует назвать в первую очередь ус таиов-ление понятия химического эквивалента и введение понятия о валентности как формальной численной характеристике способности атомов данного элемента соединяться с тем или другим определенным числом атомов другого элемента. [c.55]

    Гибридизация одной s- и трех р-орбиталей (sp -гибридизация), как уже указывалось, объясняет валентности углеродного атома. Образование sp -гибридных связей характерно также и для аналогов углерода — кремния и германия валентности этих элементов также имеют тетраэдрическую направленность. Может возникнуть вопрос — если гибридные орбитали обеспечивают большую концентрацию электронного облака между ядрами и, следовательно, более прочную связь, то почему они не возникают в НаО л NH3 На да шый вопрос следует ответить, что направленность связей в этих соединениях также можно объяснить sp -гибридизацией. Такой подход является даже более точным, чем изложенный на стр. 161 и 162. Не следует, однако, забывать, что оба подхода являются приближенными. При образовании молекулы HjO атом кислорода люжет приобретать конфигурацию наружного слоя где Ф2, Фз и — sp -гибридные волновые функции верхние индексы указывают количество электронов, занимающих данную орбиталь. Таким образом, две из четырех гибридных орбиталей атома кислорода заняты неспаренньши электронами и могут образовать химические связи угол между этими связями должен составлять 109,5°. Это значение ближе к экспериментальному (104,5°), чем величина 90°, даваемая схемой, рассмотренной на стр. 161. Однако если на стр. 161—162 пришлось объяснять отклонение теоретической величины от экспериментальной для молекулы HjO, то здесь нужно объяснить, почему углы между связями у аналогов воды HjS, HaSe и НаТе заметно отличаются от 109,5°. Это объясняется действием ряда факторов. В частности, в соединениях, содержащих большие атомы, связь слабая и выигрыш энергии в результате образования связи гибридными орбиталями не компенсирует некоторое возрастание энергии s-электронов, обусловленное их переходом на sp -гнбридные орбитали. Это препятствует гибридизации. Кроме того, как показали точные расчеты, при образовании связи Э—Н 25-орбитали кислорода (и азота) сильнее перекрываются с ls-орбиталями водорода, чем 2р-орбита-ли. Для аналогов кислорода, наоборот, сильнее перекрываются р-орбитали. Это обусловливает больший вклад s-состояний (гибридизацию) в образование химической связи в молекуле Н О, чем в ее аналогах. Поэтому валентные углы в H2S, HjSe и НаТе близки к 90°. [c.168]

    Кроме длины и энергии важными характеристиками химической связи являются насыщаемость и направленность. Однако эти свойства присущи лишь ковалентной связи. Ионная связь, природа которой обусловлена ненасыщенным и пространственно симметричным электростатическим полем центрального иона, ненасыщена и не имеет какого-либо определенного направления. Насыщаемость ковалентной связи выражается в ограничении числа валентных связей, которые может дать данный атом. Например, азот притягивает три атома водорода с образованием молекул ЫНз, молекул же МН4, ЫН5 и т. д. не существует. Согласно квантово-механическим соображениям в образовании связи могут участвовать только неспаренные электроны атома число их определяет валентность элемента. В простых случаях число неспаренных электронов в атоме находится с помощью принципа Паули и правила Гунда, в более сложных рассматривается возможность гибридизации волновых функций. Направленность связей объясняет стереохимию молекул, которая начала развиваться после того как Ле-Бель и Вант-Гофф (1874) выдвинули важнейший тезис о тетраэдрическом расположении валентностей углерода. [c.18]

    Необходимо помнить, что относительная электроотрнцатель-иость атома не является строго постоянной величиной, так кшс она зависит как от валентности атома в соответствующем соединении, так и от того, с атомами каких других элементов он соединен. Поэтому значения относительной электроотрицательностп (табл. 16) могут служить лишь для оценки направления смещения электронов.при образовании молекул. [c.92]

    Образование устойчивой электронной конфигурации может происходить несколькими способами и приводить к молекулам (и веществам) различного строения, поэтому различают несколько типов химической связи. Таковы ионная, ковалентная и донорно-акцепторная (координационная) связи. Кроме этих видов связей существуют другие, не относящиеся непосредственно к рассмотренным электронным оболочкам. Таковы водородная, металлическая и вандерваальсова связи. Далее мы рассмотрим каждый из указанных типов связи отдельно, но прежде нам необходимо рассмотреть понятие валентность элементов , так как имеет смысл говорить не просто о валентности элемента, но о валентности элемента в определенном химическом соединении. [c.70]

    Валентность. Окислительное число. Валентность — это мера способности атома элемента к образованию химических связей с атомами других или того же самого элемента. Так, хлор в НС1 одновалентен, кислород в HjO двухвалентен и т. д. В пособиях по химии не всегда однозначно указываются валентные числа атомов элементов из-за трудности всей проблемы химической связи в целом. В настоящем посрбии авторы пользуются как понятием валентность , так и окислительное число . Под валентностью элемента подразумевается число одиночных электронов, которые атом выделил для образования химических связей. Азот в NH, трехвалентен, но в HNO3 не пятивалентен, так как атом азота не имеет пяти одиночных электронов (см. стр. 213). В молекуле Nj азот трехвалентен (а не нульвалентен), так как каждый из атомов азота выделил по три электрона для создания трех связующих электронных пар. Углерод во всех < лучаях четырехвалентен, кислород двухвалентен. Для интерметаллических соединений обычное понятие валентности неприменимо и этот вопрос в практикуме не рассматривается. Валентность указывается без знака плюс или минус. [c.68]

    В молекулах воды и аммиака связи у атомов кислорода и азота образуются за счет электронов только одного р-подуровня. Поэтому только взаимной ориентацией р-электронных облаков обусловливается конфигурация соответствующих молекул. Сложнее происходит образование связей у атомов элементов подгрупп ПА, ПВ, П1А и IVA. В образовании связей, например, атомами бериллия, бора и углерода высшей валентности участвуют электроны разных подуровней у Ве — sp, в В — sp2, у С — sp ( 3). На основании этого можно было бы предположить, что валентная связь, образованная s-электронным облаком, будет отличаться от остальных пространственной конфигурацией, направленностью, прочностью и т. д. Изучение же молекул Be la, B I3, СН4 и им подобных показало, что связи в каждой из них равнозначны. Это явление Слейтер и Полинг объяснили тем, что во всех случаях связи у атомов Ве, В и С образовались за счет новых равноценных электронных облаков — гибридных (смешан- [c.94]

    Некоторые элементы имеют нес10льк0 эквивалентов, поэтому они обладают переменной валентностью. Каждой единице валентности отвечает наличие одной химической связи между атомами, которую в структурных формулах изображают черточкой. При образовании молекулы атомы всегда соединяются к таких количествах, что общее число валентностей одного элемента равно числу валентностей другого, что нытекает из закона эквивалентов. Чтобы составить формулу по валентности, надо прежде всего найти наименьшее кратное валентностей соединяющихся, элементов в данном соединении. Частное от деления наименьшего хратного на валент- [c.32]

    С учетом сказанного можно дать теперь определение валентности. Это число электронных пар, соединяющих данный атом с другими в соединении. При обычном механизме образования ковалентной связи (может быть еще донорно-акцеп-торный механизм, который будет рассмотрен ниже) максимальная валентность элемента равна числу неспаренных электронов в атоме. Отсюда следует важное свойство ковалентной связи, а именно ее насыщаемость данный атом может быть связан ковалентном связью лищь с определенным числом других атомов, но не образует прочных связей со всеми близко к нему расположенными атомами. Например, в жидком кислороде атомы кислорода связаны попарно в молекулы О2, но не образуют прочных связей вне этих молекул, т. е. с атомами кислорода соседних молекул. [c.124]

    По методу валентных связей прн сближении двух атомов водорода происходит перекрб(ваниг их 8-орбиталей, каждая из которых содержит один электрон. Этот процесс сопровождается выделением энергии при образовании общей электронной пары. Поскольку между положительно заряженными ядрами атомов водорода действуют силы электростатического отталкивания, то, начиная с некоторого расстояния между атомами, эти силы начинают пре-пятстповать дальнейшему самопроизвольному сблих ению атомов. Чтобы вновь разделить образовавшуюся молекулу На на атомы водорода, необходимо затратить энергию (436 кДж/моль) она называется энергией связи и численно равна энергии, выделившейся при образовании молекулы Н1 (—436 кДж/моль). Таким образом, образованию ковалентной связи отвечает состояние молекулы Иг с энергетическим минимумом (выигрышем энергии) в 436 кДж/моль. Обобщая этот результат на процесс образования ковалентных связей между атомами других элементов, можно утверждать, что [c.115]

    Приведенные данные говорят о том, что в самой природе элементов заложена определенная качественная и количественная закономерность, лежащая в основе процесса образования молекул сложных веществ из атомов элементов. Эта закономерность получила название валентности (термин валентность происходит от латинского слова valens—стоющий, имеющий ценность). [c.88]


Смотреть страницы где упоминается термин Валентность элементов и образование молекул: [c.124]    [c.118]    [c.24]    [c.485]    [c.10]    [c.485]    [c.306]    [c.88]    [c.258]    [c.53]   
Смотреть главы в:

Неорганическая химия -> Валентность элементов и образование молекул


Неорганическая химия (1950) -- [ c.250 ]




ПОИСК





Смотрите так же термины и статьи:

Молекула образования

Молекулы элементов

Элементы, образование



© 2025 chem21.info Реклама на сайте