Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетический фактор

    Биохимическая очистка [5.21, 5.24, 5.33, 5.55, 5.64, 5.72]. Метод основан на способности микробов использовать в процессе своей жизнедеятельности различные растворимые органические и неокис-ленные неорганические соединения (например, Сг +, аммиак, нитриты, сероводород). Поэтому применение биохимического метода дает возможность удалять из сточных вод разнообразные токсичные органические и неорганические соединения. Если скорость биохимического процесса определяется условиями подвода кислорода и поверхностью микробных тел (диффузионные факторы), те применяют аэротенки — смесители с пневматической или механической аэрацией. При пневматической аэрации часть органических соединений может десорбироваться в атмосферу. Если скорость биохимического процесса зависит только от кинетических факторов и практически не зависит от наличия кислорода и числа микробных тел, то применяют биофильтры, окислительные пруды и водоемы. [c.496]


    Так как для разных по геометрической или электронной структуре молекул значения констант Генри, по крайней мере при подходящей температуре, обязательно различаются (поскольку они связаны с энергией молекулярного взаимодействия, разной для разных молекул, см. стр. 487 сл.), то теория равновесной хроматографии в области изотермы распределения Генри приводит к выводу об обязательном газо-хроматографическом разделении любых компонентов. В действительности этому мешают, во-первых, как мы уже видели, отклонения изотермы распределения (адсорбции, растворения) от изотермы Генри и, во-вторых, как мы увидим в дальнейшем, диффузионные и кинетические факторы. Эти причины приводят к асимметричному искажению и размыванию хроматографической полосы, что ведет к наложению полос близких по свойствам веществ друг на друга и поэтому мешает четкому разделению компонентов. [c.557]

    Эти предположения и допущения позволяют исключить все кинетические факторы и таким образом свести теоретический анализ константы скорости реакций к анализу лишь термодинамических функций. Из последних только термодинамические свойства X недоступны для независимого определения и должны быть определены из экспериментальных данных о скоростях. [c.438]

    Эта глава в основном посвящена рассмотрению таких кинетических факторов, учет которых благоприятно влияет на выход целевого продукта. Некоторые термодинамические аспекты протекания реакций в условиях, близких к равновесию, кратко рассмотрены автором в его книге [28]. В ней отмечалось, например, что в случае обратимой реакции [c.130]

    Решение. Из рис. У1-9 следует, что снижение давления, согласно принципу Ле Шателье, сдвигает равновесие реакций вправо (выделение водорода) процесс при этом проходит при более низкой температуре. Выбор оптимальных условий зависит от того, какой из продуктов будет целевым, нужно ли уменьшить содержание побочного продукта до минимума (например, иногда побочный продукт используется в другом синтезе), можно ли применить рециркуляцию, необходимо ли добиться определенной скорости реакции (кинетический фактор). Приняв, что реакция проходит достаточно быстро, рассмотрим указанные в условиях примера случаи. [c.179]

    Избыток реагента убыстряет реакцию, поскольку скорость ее пропорциональна концентрациям исходных веществ (кинетический фактор). Примером может служить сжигание метана в избытке воздуха, вследствие чего достигается более полное сгорание. Подобным же образом большая разность концентраций в гетерогенных системах ускоряет диффузионные процессы. [c.356]


    Известно, что достижение максимального значения этого соотношения (т. е. 1) зависит в значительной мере от кинетических факторов. [c.21]

    Количество продуктов окисления определяется в основном кинетическими факторами в меньшей степени оно связано с термодинамическими данными, которые сходны для параллельных и последова-о ельных реакций одного и того же соединения. [c.132]

    Общая скорость превращения тяжелых парафинистых фракций в продукты окисления зависит от ряда кинетических факторов — температуры, давления, соотношения реагентов, эффективности контактирования фаз (в данном случае газ — жидкость), строения и среднего молекулярного веса углеводородов в смеси, присутствия промоторов, [c.149]

    Состав продуктов окисления зависит в первую очередь от кинетических факторов и связан с различной относительной скоростью образования циклогексанола и циклогексанона, с одной стороны, и скоростями дальнейших реакций этих соединений — с другой. [c.160]

    Технологические параметры гидроочистки в каждом конкретном случае определяются соответственно качеством перерабатываемого сырья, требованиями к качеству получаемой продукции и типом используемого катализатора, которые указаны в задании на проектирование. В качестве примера в табл. 2.1 приведены технологические параметры гидроочистки некоторых нефтяных фракций на алюмокобальтмолибденовом катализаторе. В указанных условиях гидроочистки термодинамическое равновесие всех реакций гидрирования органических соединений серы и непредельных углеводородов практически нацело смещено вправо, и глубина гидрогенолиза определяется кинетическими факторами. Тепловые эффекты этих реакций приведены в табл. 2.2. [c.142]

    Таким образом, сравнивая потенциалы двух сопряженных пар, можно принципиально решить вопрос — какая из них способна выполнить функцию окислителя или восстановителя по отношению к другой. Однако следует иметь в виду, что такое сопоставление не всегда приводит к однозначному решению, поскольку при этом не учитывается кинетический фактор, который не всегда зависит от разности электродных потенциалов отдельных сопряженных пар. Необходимо учесть также, что если эта разность сравнительно невелика, то при увеличении концентрации окисленного продукта реакции последняя может стать заметно обратимой. [c.164]

    Содержание настоящей главы, естественно, тесно связано с проблемой оптимизации. Строго говоря, выбор оптимального типа реактора должен завершить этап выявления оптимума из числа всех существующих возможностей, а не предшествовать ему. Однако мы исходим из предположения, что при рассмотрении одних кинетических факторов обычно имеется возможность выбора подходящего типа реактора на основе простейших соображений, частично теоретического, частично интуитивного ха- [c.106]

    Таким образом, коэффициент ускорения Фг определяется кинетическим фактором Di Di , структурными характеристиками мембранной матрицы 5у/Пз и связанным с этим отношением коэффициентов сопротивления переносу в газовой и адсорбированной фазах а также термодинамическим фактором [c.69]

    При относительно низких температурах термодинамически возможно алкилирование любым олефином любого парафина, так что затруднения с проведением реакций алкилирования л-парафинов вызваны кинетическими факторами. О том же го- [c.237]

    Разумеется, во многих процессах димеризации образуется смесь димеров различного строения. Так, из этилена в присутствии катализатора — соль кобальта на активном угле —получили н-бутены с преимущественным содержанием бутенов-2 при низких и бутенов-1 при высоких скоростях подачи сырья [36]. Здесь образование димеров различной структуры определяется не термодинамическими, а кинетическими факторами, и это характерно для большинства технических процессов. [c.248]

    Этот расчет показывает, что для правой области подбором температуры можно обеспечить условия получения только димера. В практических исследованиях, однако, для этой цели используют кинетические факторы. [c.254]

    ПО реакции Б, а также различия в вероятности образования углеводородов разных типов не имеют значения, так как селективность процесса определяется не термодинамическими, а кинетическими факторами. [c.334]

    Если кинетические факторы не лимитируют процесс регенерации, минимальная продолжительность регенерации составит г = 860 692/115 294 = 7,47 ч. (2.63) [c.159]

    В изложенной выше теории равновесной хроматографии были рассмотрг-ны только те искажения хроматографической полосы (обострение фронта и растягивание тыла или наоборот), которые вызывались отклонениями изотермы распределения (адсорбции или растворения, от закона Генри. Но даже и при соблюдении закона Генри хроматографическая полоса при движении вдоль колонки должна размываться. Это происходит вследствие продольной диффузии (вдоль и навстречу потока газа) молекул компонентов газовой смеси, переноса и диффузии их вокруг зерен насадки, а также диффузии в поры (так называемой внутренней диффузии). Кроме этого, молекулы компонента смеси, попап-шие в неподвижную фазу, должны отставать от его молекул, переносимых в потоке газа, вследствие конечной скорости адсорбции и десорбции на твердой или жидкой иоверхности, наличия поверхностной диффузии (вдоль поверхности), а в случае газо-жидкостной хроматографии еще и вследствие диффузии (поперечной и продольной) внутри неподвижной жидкой пленки, а также ввиду адсорбции и десорбции на носителе неподвижной жидкости. Все эти разнообразные диффузионные и кинетические явления приводят к тому, что в отношении элементарных процессов удерживания в неподвижной фазе и возвращения в движущийся газ-носитель разные молекулы данного компонента окажутся п разных условиях и, следовательно, будут перемещаться вдоль колонки с разными скоростями, что неизбежно приведет к размыванию хроматографической полосы—к снижению и расширению пика. Уже одно перечисление причин размывания хроматографической полосы показывает, насколько сложны диффузионные и кинетические процессы в колонке. Учитывая некоторую неопределенность геометрии колонок, по крайней мере колонок с набивкой (колебания в форме и размерах зерен, в их пористости и упаковке, в толщине пленки неподвижной жидкости, в доступности ее поверхности или поверхности адсорбента в порах, можно оценить влияние диффузионных и кинетических факторов на форму хроматографической полосы лишь весьма приближенно. Однако даже такая приближенная теория очень полезна, так как она позволяет выяснить хотя бы относительную роль различных диффузионных и кинетических факторов, влияющих на размывание, и указать тем самым пути ослабления этого влияния. [c.575]


    Во второй и третьей частях, посвященных реакционной способности веществ, главное внимание уделено их химическому сродству. Разумеется, вопросы кинетики не менее (а зачастую даже более) важны, чем вопросы статики процессов. Однако, если принять во внимание специфичность и большое разнообразие скоростных факторов и также огромную сложность учета их влияния на реакционную способность веществ, изменение представлений о механизме протекания процессов по мере углубления знаний и, наконец, то обстоятельство, что большинство подлежащих рассмотрению вопросов связано со статикой различных процессов, то этот выбор вряд ли можно счесть спорным. Действительно, и закон действующих масс, и принцип Ле Шателье, и многие свойства растворов (в их числе растворимость, температуры отвердевания и кипения, давление пара), и процессы в них (диссоциация, нейтрализация, сольватация, комплексообразование, гидролиз и т.д.)—это прежде всего проблемы равновесия. Вместе с тем надо отчетливо показать, что вопросы статики и кинетики это проблемы возможности и действительности и что значение энергетического (термодинамического) и кинетического факторов неодинаково для различных типов процессов для реакций в растворах электролитов (например, при нейтрализации), для высокотемпературных реакций и других быстрых процессов кинетические соотношения не существенны наоборот, для медленных реакций и таких, продукты которых гораздо устойчивее исходных веществ (например, при горении), не играют ощутимой роли равновесные соотношения. [c.4]

    Состав продуктов реакции контролируется не только термодинамическим равновесием, но часто и кинетическими факторами. Алкилирование ароматических углеводородов — сложный процесс, состоящий из ряда взаимосвязанных между собой реакций, таких, как алкилирование, изомеризация, диспропорциони-рование, переалкилирование, полимеризация и т. д. Расчеты равновесия процесса с учетом побочных реакций являются сложной задачей, которая в определенной степени была решена рядом исследователей [9, 10]. Тем не менее термодинамические расчеты по упрощенной схеме процесса алкилирования, в которой, не учитывается ряд стадий и побочных реакций, целесообразно использовать для определения основных параметров процесса, необходимых для его оптимизации. Термодинамический расчет алкилирования бензола этиленом и пропиленом в газовой и жидкой фазах детально рассмотрен в работе [10] и при необходимости может быть использован читателями. Сведения для термодинамических расчетов алкилирования бензола, толуола, ксилолов и других алкилароматических углеводородов можно заимствовать из работы [11]. [c.15]

    Алмаз имеет кубическую решетку, построенную из сочетания тетраэдров, плотно упакованных в куб. По сравнению с графитом решетка алмаза более напряжена и это определяет более высокую устойчивость последней модификации при обычных условиях. Переход алмаза в графит при обычных условиях заторможен кинетическими факторами. [c.175]

    Из этого уравнения следует, что при Р— 1 атм величина ДС1.о>0 при всех температурах. Следовательно, с термодинамической точки зрения алмаз при этих условиях неустойчив и может самопроизвольно переходить в графит. Такой переход сдерживают только кинетические факторы. [c.175]

    Этот эффект, обнаруженный ранее нами на модельных топливных системах, связан с тем, что в НДС со вторичными асфальтенами определяющим является кинетический фактор устойчивости, за счет которого менее дисперсные лиофобные системы могут удерживать в растворе достаточно крупные агрегаты асфальтенов. [c.111]

    Таким образом, при катализе протонными кислотами, а в более мягких условиях — с другими катализаторами состав продуктов алкилирования определяется кинетическими факторами, а с хлористым алюминием и в более жестких условиях катализа алюмосиликатами и цеолитами в пределе может установиться равновесный состав изомеров и продуктов последовательного алки-лирования. Это имеет большое значение при выборе оптимального мольного соотношения реагентов при алкилировании, опре- [c.246]

    В соответствии с современными представлениями реакция алкилирования протекает по сложному многомаршрутному -меха-низму, причем долевое участие отдельных направлений зависит от природы и структуры катализаторов, алкилирующих агентов и растворителей, соотношения компонентов и условий проведения реакции, структуры образующихся комплексов, распределения электронной плотности в атакующей группе и ароматическом углеводороде, геометрических факторов (как от объема алкильного заместителя, так и от объема комплекса катализатора и алкилирующего агента) и т. д. Изменение условий реакции алкилирования и теоретически обоснованный состав компонентов исходной реакционной смеси позволяют управлять соотношением термодинамических и кинетических факторов, что дает возможность априорно определять состав целевых продуктов. [c.218]

    Низкая реакционная способность ЗЕд объясняется кинетическими факторами, обусловленными валентным и координационным насыщением центрального атома молекулы 8Ев и ее высокой энергией ионизации (19,3 В). 5Ев является диэлектриком, который благодаря химической инертности и большой молекулярной массе используют в качестве газообразного изолятора в генераторах высокого напряжения и других электрических приборах. Довольно инертен и ЗОзЕг, который разлагается лишь растворами щелочей. [c.332]

    Основные затруднения в выборе схемы процесса заключаются в том, что микроструктура образующихся полиалкенамеров определяется не столько термодинамическими, сколько кинетическими факторами и, что особенно важно, зависит от применяемой каталитической системы. Это можно объяснить, исходя из участия в реакции п-аллильных комплексов [25, 26]. [c.321]

    Во-первых, она описывает изменения концентраций всех компонентов = (К -Ь М,) — как активных В,, так и молекулярных устойчивых веществ Мг- Физический смысл требования стационарности (квазистационарности) активных компонентов К,- есть требование равенства кинетических факторов разветвления и обрыва, в то время как стационарность (квазистациопарность) молекулярных компонентов есть лишь форма общего контрольного требования (т. е. выполнения материального баланса). При этом, как правило, в начальных стадиях процесса изменения концентраций активных компонентов Иг = = Rг(i) являются быстрой подсистемой решения, тогда как изменения молекулярных компонентов = Mi(i) есть медленная подсистема. [c.160]

    Именно это обстоятельство и обусловливает существование критического по давлению условия (4.18), физический смысл которого состоит в том, что оно устанавливает равенство кинетических факторов разветвления и обрыва р = у. Необходимо подчеркнуть, что условие (4.18) весьма приближенно и справедливо лишь в той мере, в какой оно учитывает обрыв лишь по реакции 11, пренебрегая другими стадиями обрыва, и пока 11 — безусловный обрыв (т. е. для маршрутов 11 15, 11 18, 11 25). Дальнейший рост давления приводит к увеличению роли маршрутов 11 16, 11 17, 11- -19, и реакция 11 перестает быть обрывной. Иными словами, с ростом давления растет отношение (продолж, по нОа)/ (обрыва по нОа), и как только оно становится больше некоторого критического, имеет место переход процесса из области медленного режима С в область О (см. рис. 31) через третий предел, и процесс вновь идет энергично с воспламенением. Ско- [c.301]

    Следует, однако, отметить, что делать априорГный расчет состава продуктов алкилирования на основе только стабильности карбокатионов нельзя, так как важную роль имеют и кинетические факторы, которые вносят значительные коррективы в направленность протекания реакции. Например, в соответствии с термодинамическими данными, пропилхлорид должен преимущественно превращаться в более стабильный изопропил-катион, который при атаке бензола должен давать изопропилбензол. Образование значительных количеств пропилбензола при алкилировании бензола этим агентом в присутствии А1С1з можно объяснить тем, что пер ичный алкил-катион в силу своей высокой реакционной способности присоединяется к ароматическому ядру раньше, чем произойдет его перегруппировка. [c.109]

    То обстоятельство, что описание пре делов требует использования моделей очень высокого уровня б-представительности, не является удивительным. Критические кинетические явления — пределы — вообще характеризуются исключительно тонким балансом взаимодействия всех кинетических факторов [91]. Если удовлетворительная аппроксимация таких относительно грубых (и в не-которо.м смысле даже качественных) характеристик, как температура самовоспламенения, период индукции и т. д., достигается при уровнях б — (0,60,7), т. е. уже на достаточно простых моделях, то сложный характер предельных явлений требует в принципе более высокой точности описания. Это, с одной стороны, затрудняет описание критических явлений, но с другой — благоприятно в том отношении, что позволяет уточнять значения кинетических параме гров с существенным сужением доверительных интервалов. Иначе говоря, параметры процесса вблизи пределов (или любых иных критических явлений) как раз и являются оптимальными параметрами для проведения активного кинетического эксперимента. [c.312]

    Кинетические факторы. Эта группа включает константы скорости и энергии активации всех основных и побочных реакций, протекающих в системе, а так ке истиные и кажущиеся порядки реакции. [c.12]

    Из приведенных данных видно, что не следует пытаться получать этилбензол из толуола, при диспропорциопировании последнего можно в ощутимых количествах получить только ксилолы, в составе которых будет преобладать л1-ксилол. Из-за слабого влияния температуры на равновесный состав выбор условий диспропорционирования определяется только кинетическими факторами. Если при диспропорционировании будет получен один или два изомерных ксилола, то следует, используя данные о константах равновесия (см. табл. 51), выполнить термодинамический расчет для реально получаемых веществ. В большинстве же реальных ситуаций получают три изомерных ксилола и можно использовать данные табл. 52. [c.226]

    В выражениях для Су, Ь, п величина п определяет число С-атомов такого углеводорода синтезируемой смеси, у которого молекулярная масса наибольшая величину п лучше определять по результатам эксперимента, так как она зависит от типа используемого катализатора. Анализ выражений для- Су, I, п, а также констант равновесия, приведенных в табл. 91, показывает, что термодинамически более благоприятно образование низкомолекулярных углеводородов. То, что синтез Фишера — Тропша можно использовать для получения высокомолекулярных углеводородов, объясняется кинетическими факторами и не противоречит термодинамическим расчетам. Последние имеет смысл проводить не для всех гипотетических возможных реакций, а только для тех, которые наблюдаются в экспериментах. [c.338]

    При анализе процессов, происходящих в аппаратах химической технологии, принято всю совокупность протекающих в них явлений условно делить на два уровня микроуровенъ микрокинетика процесса) и макроуровень макрокинетика процесса) [1]. К микро-кинетическим факторам относится совокупность физико-химических эффектов, определяющих скорость протекания физических или химических явлений на молекулярном (атомарном) уровне и в локальном объеме аппарата. Макрокинетика процесса изучает поведение ФХС в масштабе аппарата в целом. Здесь на эффекты микроуровня накладываются гидродинамические, тепловые, диффузионные явления крупномасштабного характера, структура которых определяется конструктивными особенностями промышленного аппарата, характером подвода к нему внешней энергии, типом перемешивающих устройств и т. п. [c.12]

    Не следует думать, что если возможны разные направления изменений данного вещества и образование продуктов, различных по устойчивости, преобладающим всегда будет то направление, которое ведет к наиболее устойчивому состоянию. То или другое направление процесса определяется в первую очередь соотношением скоростей параллельных процессов, а в большинстве случаев скорость зависит не столько от термодинамических параметров процесса, сколько от кинетических факторов. Поэтому очень часто процесс ведет к образованию продукта, который по термодинамической устойчивости занимает промежуточное место между исходными веществами и возможными продуктами взаимодействия, обладающими наибольщей устойчивостью в данных условиях. чЭто наблюдается и в химических реакциях и при фазовых переходах, например когда при кристаллизации из раствора (при достаточной степени пересыщения его) вещество выделяется в кристаллической форме, являющейся метастабильной для данных условий. [c.228]

    Между этими двумя непрерывными процессами имеется и большое сходство, и существенное различие. Основные кинетические факторы процесса — температура в реакционном пространстве и продолж ительность основных реакций— примерно одинаковы. Поэтому материальные балансы и качество получаемых продуктов близки между собой. В стадии первоначальной разработки процесса контактного коксования на гранулированном коксовом теплоносителе некоторые исследователи делали основной упор на осуществление его при сравнительно низких температурах (475—495 °С) и давлении 2—5 ат. При изучении этих процессов в опытно-промышленных условиях по ряду соображений технологического и конструктивного порядка были выбраны усредненные условия температура 510—540 °С и избыточное давление 0,4—1 ат. [c.108]

    Кинетика реакций гидрирования и дегидрирования. Скорость этих реакций, как и для других гетерогеннокаталитических процессов, в общем случае может зависеть от диффузионных и кинетических факторов. Первые из них играют тем меньшую роль, чем интенсивнее перемешивание и турбулентность потоков и чем ниже температура. В большинстве случаев кинетика гидрирования и дегидрирования описывается общим уравнением Лэнгмюра — Хин-шельв да, выведенным для случая, когда лимитирующей стадией является химическая реакция на поверхности катализатора. Если обозначить через Ь адсорбционные коэффициенты и через Р — парциальные давления реагентов, то для обратимой реакции дегидрирования при мономолекулярном расщеплении сорбированного вещества пмеем [c.467]

    Алкилирование определяется не только термодинамическим равновесием, но и кинетическими факторами, связанными со свободной энергией активации, поэтому статический фактор не может дать априорного предсказания соотношения изомеров. Эта. задача довольно успешно решается уравнением ГалГмета [22] (к сожалению, стерические факторы этим уравнением не описы- ваются). [c.41]

    Этилен и пропилен в условиях процессов алкилирования не являются заметными источниками образования примесей [194]. Однако, с увеличением скорости подачи олефинов в реакционной массе накапливаются полиалкилароматические углеводороды, дезактивирующие катализатор. Это объясняется тем, что скорость реакции алкилирования заметно выше скорости реакции диспропорционирования, т. е. в данном случае определяю-. щую роль играет соотношение термодинамического и кинетического факторов. [c.150]


Смотреть страницы где упоминается термин Кинетический фактор: [c.400]    [c.267]    [c.162]    [c.107]    [c.236]    [c.308]    [c.283]    [c.112]    [c.413]   
Смотреть главы в:

Ионоселективные электроды -> Кинетический фактор




ПОИСК







© 2025 chem21.info Реклама на сайте