Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ароматические компоненты

    Природные газы из чисто газовых месторождений обычно характеризуются крайне низким содержанием тяжелых углеводородов и относятся к сухим газам. Газы из газоконденсатных месторождений состоят из смеси сухого газа с пропаи-бутановыми фракциями, ароматическими компонентами, газовым бензином и дизельным топливом. Нефтяные газы более богаты тяжелыми углеводородами, чем природные газы из чисто газовых месторождений, и представляют собой смесь сухого газа с пропаном, бутаном и газовым бензином. Физико-химические свойства основных компонентов, входящих в состав природных газов, приведены в табл. 3. [c.110]


    Современные бензины представляют собой смеси нескольких компонентов. В качестве базовых бензинов, являющихся основной составной частью авиабензинов, используются бензины прямой перегонки из отборных нефтей и бензины каталитического крекинга. Для получения необходимых антидетонационных свойств к базовым бензинам добавляют изопарафиновые и ароматические компоненты. [c.108]

    Преимущества применения нафталина в качестве ароматического компонента при производстве синтетических смазочных масел конденсацией с хлорированным когазином [2301 [c.238]

    Нефтяные дистилляты, из которых даже гидроочисткой не удается получить пригодного для химической переработки материала, дополнительно облагораживают, подвергая перед гидрогенизацией исходную дистиллятную фракцию экстракции избирательными растворителями, например жидким сернистым ангидридом (процесс Эделеану). При этом ароматические компоненты переходят в жидкий сернистый ангидрид, в котором парафиновые углеводороды не растворяются. [c.15]

    Совершенно аналогичные явления наблюдаются при хлорировании нефтяных фракций с низким содержанием ароматических компонентов [32]. Результаты хлорирования нефтяной фракции, выкипающей в пределах 175—275°, приведены в табл. 64. [c.150]

    В смесях предельных углеводородов с олефинами или с ароматическими углеводородами во всем интервале концентраций лучше адсорбируется непредельный или ароматический компонент, и график зависимости кажущейся адсорбции непредельного компонента от концентрации в пределах от О до 100% имеет обычно вид изотермы и-образного типа. [c.137]

    ВЫВОД, что в уретановых эластомерах исключительно важны взаимодействия в сегментах идентичной структуры [52]. При наличии ароматических компонентов образуются домены, особую роль в которых играют водородные связи. Взаимодействие агрегатов типа изоцианат — удлинитель цепи — изоцианат неизмеримо выше, чем в гибком (полиэфирном) сегменте. Такие агрегаты можно рассматривать как поперечные связи с соответственно меньшей энергией диссоциации. [c.547]

    Недостатком аппаратов с непористыми мембранами является низкая их производительность. Однако вследствие высокой избирательной способности непористых мембран этот метод может найти применение для разделения углеводородов, в том числе и их изомеров, выделения из смесей ароматических компонентов, в процессах очистки и т. д. [42]. [c.35]

    Предшественники и пути образования ароматических КС нефти пока окончательно не установлены. Есть предположения, что эти вещества, как и все остальные ароматические компоненты нефти, образуются на различных стадиях нефтеобразования из поли- [c.117]


    И ограничение пределов кипения, и подготовка сырья методом простой перегонки могут обеспечить приемлемые показатели процесса газификации, но есть и другие, более действенные пути повышения его эффективности. В частности, потребность в сырье, состоящем главным образом из парафиновых углеводородов и в меньшей степени из нафтеновых углеводородов (последние при нагревании могут разлагаться на ароматические компоненты и водород), можно удовлетворить за счет сведения к минимуму содержания насыщенных углеводородов. Аналогичным образом следует точно установить уровень максимальной концентрации сернистых соединений. И наконец, установление максимального содержания ароматических и олефиновых компонентов более целесообразно, чем указание на необходимость подготовки сырья прямым фракционированием. [c.78]

    Авиационные бензины Б-100/130 и Б-95/130 вырабатываются на базе бензина каталитического крекинга с добавлением парафиновых компонентов изостроения (соответственно 25—40% и 10—20%) [6] для повышения сортности к этим бензинам добавляют ароматические компоненты — толуол или алкилбензол (в сумме не более 6%). [c.73]

    При применении нафталина в качестве исходного ароматического компонента для получения смазочного масла, по вязкости равноценного-получаемому на основе ксилола, можно применять хлоркогазин со значительно меньшей степенью хлорирования. [c.238]

    Изучение взаимодействия ароматических углеводородов с хлористым водородом [43] и системой хлористый водород — хлористый алюминий [56] оказалось особенно полезным для понимания природы ароматических комплексов с электрофильными агентами. Более того, изучение поведения ароматических углеводородов с фтористым водородом [182] и системой фтористый водород — трехфтористый бор [212] дало чрезвычайно ценные данные для выяснения влияния структуры ароматических компонентов на их способность к образованию комплексов. Следовательно, желательно использовать результаты, полученные при этих исследова- [c.398]

    Этот процесс можно детальнее пояснить на следующем примере. Твердый парафин, хлорированный до содержания хлора 19,5%, ра.ч-бавляют 2007о объемн. керосина, не содержащего ароматических компонентов. Полученный раствор направляют в вертикальный колонный реактор, заполненный фарфоровыми кольцами Рашига, к которым добавлено в соответствуюшей форме Ю % вес. металлического алюминия и 1 % вес. металлической меди. Температуру в реакторе поддерживают 170  [c.242]

    При применении высокомолекулярных хлористых алкилов и бензола в качестве ароматического компонента получают поверхностноактивные вещества, по своей моющей и очищающей способности значительно превосходящие некалы, которые были разработаны лишь для применения в качестве смачивающих веществ. [c.247]

    В 1895 г. Радзевановский [21] получил кумол, используя в качестве катализатора хлористый алюминий, а Брочет показал, что минеральные кислоты также эффективны в этой реакции [4]. Кроме того, Ипатьев с сотрудниками в ряде патентов показал, что, применяя в качестве катализатора кислоту на носителе, они получили хорошие результаты и что кумол оказался ценным компонентом высокооктановых топлив. Однако пе было причин экономического характера для внедрения этого процесса в промышленность, пох а не было ясно установлено, что в авиационных топливах недостает ароматических компонентов, в частности для двигателей на британских самолетах спитфайер . Как только эта потребность стала очевидной, было сделано все, чтобы осуществить этот процесс в промышленном масштабе. Эта потребность была предсказана на основании научных исследований и фирма Шелла уже довольно успешно изучала этот процесс. [c.497]

    Для ароматических углеводородов остаются в силе положения, отмечавшиеся выше для изоалканов и алкилнафтенов о том, что при возрастании молекулярного веса и температуры кипения увеличивается число твердых изомеров, причем более резко, чем для изоалканов и алкилнафтенов. Поэтому твердые углеводороды высококипящих фракций нефти обычно более обогащены твердыми ароматическими компонентами, чем кристаллические углеводороды легких фракций. [c.45]

    Прямые соединяющие линии на рис. И не оканчиваются точно на кривой, разграничивающей фазы. Слева эти линии оканчиваются, не доходя до кривой, потому что слой растворителя имеет более высокую концентрацию масла, когда в нем растворены только ароматические компоненты масла, чем в том случае, если бы в нем были растворены менее растворимые парафины (для чего требуется значительно большее количество растворителя). Подобно этому справа соединяющие линии проходят немного за пределы граничной кривой, потому что нерастворсниая парафиновая часть масла представляет собой худший растворитель для метанола, чем всеУмасло в целом. Концы соединяющих линий образуют другую кривую (не показанную на диаграмме), являющуюся бинодальной кривой, положение которой неопределенно, так как оно зависит от соотношения объемов слоев. Такая неясность является результатом того, что сложная смесь рассматривается в качестве одного компонента. [c.174]


    Отсюда следует, что эти данные не подтверждают карбоыий-иоиный механизм дл/f реакции Фриделя-Крафтса применительно к этим первичным галоидалкилам. Зато они хорошо согласуются с механизмом, основанным на скорости реакции, контролируемой нуклеофильной атакой ароматического компонента па поляризованный комплекс хлористого бензила с хлористым алюминием. [c.440]

    Установлено опытом, что при очистке остаточных масел одним растворителем необходимо перед экстракцией удалить асфальт, осаждая его пропаном. В Дуосол-ироцессе [87 ] обе цели осуществляются одной операцией. Пропан, который поступает в один конец системы, осаждает асфальт, избирательно растворяет более иарафинистые компоненты и перемещает их в рафинатную часть системы. Смесь фенола и крезола избирательно растворяет асфальтовые смолистые и ароматические компоненты и перемещает их в экстрактную часть системы. Процесс обычно проводится при 43—77° С.2 Выбор растворителя зависит от ряда факторов, таких как возможность применения для обработки масла, гибкость по отношению к различным маслам, стоимость, токсичность, возможность последующего удаления, растворимость, селективность и легкое разделение фаз. Ниже приводятся данные по мировому производству растворителей для очистки масел в 1950 г. в тыс. сутки [89] [c.282]

    Алкилбензосульфонаты с различными алкильными цепями. При получении поверхностно-активных веществ этого типа (кроме тетрамеров пропилена) в качестве агентов алкилирования используют тримеры изобутилена и хлорпроизводные углеводородов из керосиновой фракции нефти, а также полимеры других алкенов, например пентенов. В качестве ароматического компонента иногда вместо бензола используют толуол. [c.342]

    Комплекс квалификационных методов использовали для решения следующих вопросов возможность изменения сырья для получения компонента каталитического крекинга бензинов Б-95/130 и Б-100/130 возмржность изменения технологии алкилирования (применение поверхностно-активных веществ) при получении технического изооктана, используемого в качестве высокооктанового компонента авиационных бензинов возможность частичной замены дефицитных ароматических компонентов в прямогонных бензинах на компонент каталитического риформинга и ряд других. Всего за последние 11 лет по комплексу методов были испытаны более 30 опытных образцов авиационньа бензинов и их компонентов. По приблизительным подсчетам экономия трудовых и капитальных затрат за счет уменьшения объема и сокращения времени испытаний этих образцов бензинов при использовании комплекса квалификационных методов составила около 5 млн. руб. [c.70]

    Авиационные бензины Бгнзин Б-70 ранее получали прямой перегонкой отборных нефтей нафтенового основания с добавлением ароматических компонентов в количествах, не превышающих 20 /о суммарного содержания ароматических углеводородов в бензине. В настоящее время бензин. Б-70 готовят на базе бензина, катали-., тического pифopмингaJ йГ катализата "риформинга удаляют аро-мЭТ ичёскйе углеводороды и полученный рафинат смешивают с исходным катализатом. В смесь, состоящую из 50—55% рафина-та и 30—40% катализата, добавляют 10—12% алкилбензина. Бензин Б-70 можно готовить компаундированием некоторых газоконденсатов с алкилбензином. [c.177]

    Высшие фращии нефти содержат иногда значительные количества ароматических углешдородов. Здесь наблюдается довольно общая закономерность количество ароматических компонентов. растет [c.9]

    Зтого недостатка лишён ашаыбензол, у которого тешература застывания ниже мгац с 60 °С, К недостаткам ароматических углеводородов относится их пониженная чувствительность (приемистость) к ТЭС и относительно высокая гигроскопичность, что заставляет ограничивать добавление высокооктановых ароматических компонентов до 20 [c.84]

    Величина АТ является мерой содержания ароматических компонентов в масле. Процентное содержание углерода в ароматические кольцах находят умножением этой величины на так назы-ваемь й ароматический фактор . Было установлено, что повышение ааилиновой точки различных нефтяных масел на 1 ° С означает уменьшение содержания ароматических колец большей частью на величину, близкую к 0,79. Так как повышение анилиновой точки, обусловленное гидрогенизацией, равно 0,85, то процентное содержание углерода в а])оматических кольцах %Са =-= 0,79 0,85 АТ = 0,67 АТ. (0,67 — ароматический фактор .) Эту взличин ароматического фактора берут для расчетов в тех случаях, когда % Са лежит в пределах 10—20%. Если % Са более 20, р5Комендуется фактор 0,64, если менее Ю, , рекомендуется факир 0,72. [c.275]

    Добавление к ацетону или метилэтилкетону ароматического компонента приводит к увеличению растворимости в нем углеводородов парафина. Однако при повышении содержания ароматического растворителя в смеси с кетоном наряду с ростом выхода депа-рафинированного масла увеличиваются продолжительность фильтрования, ТЭД и температура застывания полученного масла (табл. 18) [46]. Сравнивая приведенные данные, следует отметить, что при одном и том же выходе депарафииированного масла (на- [c.142]

    Применение растворителя переменного состава не влечет технологических трудностей, так как при регенерации кетон-ароматического растворителя в парах, уходящих из первой ступени регенерации, концентрация кетона повышается, в то время как пары следующих ступеней регенерации растворителя содержат больше ароматического компонента. Ниже приведены данные о содержании кетона при регенерации растворителя из раствора фильтрата на одной из установок обезмасливаиия Грозненского НПЗ им. А. Шерипова [7]  [c.153]

    Электрокинетические явления, происходящие в неводных дисперсных системах, в частности влияние постоянного однородного электрического поля на суспензии твердых углеводородов нефти в органических растворителях, описано в работах [104, 114]. В качестве дисперсионной среды были взяты органические растворители разной природы, многие из которых широко применяются в процессах производства масел, парафинов и церезинов (н-гексан, н-гептан, изооктан, бензол, толуол, метилэтилкетон, ацетон и др.). Поведение суспензий в электрическом поле исследовали при 20 °С в стеклянной ячейке с плоскими параллельными никелевыми электродами в интервале напряженностей до 12,5 кВ/см. Установлено, что в алифатических растворителях происходит перемещение частиц дисперсной фазы (твердых углеводородов) в сторону катода, в то время как в ароматических растворителях эти же частицы перемещаются к аноду. Для твердых углеводородов, очищенных от ароматических компонентов и смол, в дисперсных системах с той же дисперсионной средой наблюдается явление двойного электрофореза, т. е. частицы дисперсной фазы перемещаются в сторону как положительного, так и отрицательного электрода. В суспензиях твердых углеводородов, где дисперсионной средой являются полярные растворители (МЭК, ацетон), явление электрофореза выражено слабо. Для таких систем характерна можэлектродная циркуляция, сопровождаемая агрегацией частиц. Эти электрокинетические явления в суспензиях твердых углеводородов объясняются существованием двойного электрического слоя на границе раздела фаз. Двойной электрофорез и меж-электродная циркуляция объясняются [115] поляризацией частиц твердой фазы и свойственны частицам, не имеющим заряда или находящимся в изоэлектрическом состоянии с мозаичным распределением участков с различным знаком заряда. Таким образом, у частиц дисперсной фазы как в полярной, так и в неполярной среде, отсутствует электрический заряд, а если он и есть, то весьма неустойчив. [c.187]

    Тормозящее действие на комплексообразование оказывают не только смолы, но и ароматические компоненты [57, 58]. При карбамидной депарафинизации одной и той же фракции разной сте- [c.213]

    Выбор растВ Орителя во многом определяется природой сырья. В случае карбамидной депарафинизации легких фракций с большим содержанием н-парафинов применяют изооктан, алкилат или бензин, для фракций с высоким содержанием ароматических компонентов — дихлорэтан, для остаточного масла — крезол, а для сырой нефти — раствор хлористого метилена. Лучшие результаты карбамидной депарафинизации как топлив, так и масел, получены при использовании полярных растворителей, таких как изопропанол, метилэтилкетон и особенно метилизобутилкетон и хлористый метилен. Алкилкетоны и различные ненасыщенные алифатические кетоны рекомендованы [60] для депарафинизации карбамидом как в чистом виде, так и в смеси друг с другом, особенно для водного раствора карбамида. Есть сведения 65] о воз- [c.215]

    Разные виды сырья различаются по соотношению водорода и углерода в этане на каждый атом углерода приходится 3 атома водорода, в бутане 2,5, в циклогексане 2, в ароматических компонентах— еш,е меньше. Очевидно, что относительно легкое сырье (углев )дородиые газы и бензин) даст при расщеплении больше газа и мало кокса наоборот, из тяжелых нефтепродуктов с высоким содержанием углерода (особенно имеющих много ароматических компонентов) получится значительное количество кокса и меньшз газа (рис. 7). [c.39]

    Во втором случае при избытке ароматического компонента ионизация этилгалогенида происходит незначительно так как имеет место эффект растворителя. Этилгалогенид образует в этом случае неионизированный комплекс с катализатором и реа- [c.78]

    С помощью новых высокоэффективных методов — ЯМР, ЭПР, ИКС, меченых атомов и др.— от изучения вопросов о направленности протекания реакции электрофильного замещения исследователи смогли перейти на более углубленную разработк задач, связанных с установлением причин, обусловливающих эти превращения. Количественная оценка различных характеристик реакций электрофильного замещения в ароматическом ряду связана с реакционной способностью атакующих групп и электронной структурой ароматических компонентов. Известно, что энтальпия образования ДЯ°ст ионов карбонияв значительной степени характеризует их стабильность и реакционную способность (табл. 4.1). [c.86]

    При переходе от более легких к более тяжелым нефтяным фракциям содержание плохо поддающихся термопереработке сернистых соединений, ароматических компонентов и олефинов обычно возрастает. Простым методом повышения эффективности газификации лигроина в части трех вышеуказанных типов соединений было бы ограничение температуры его полного выкипания. Это, однако, находится в противоречии с требованиями максимального выхода лигроина для обеспечения его большей доступности как сырья по умеренно низким ценам. Неудивительно, что при составлении технических условий на сырье заводов, производящих ЗПГ, возникли разногласия. [c.77]


Смотреть страницы где упоминается термин Ароматические компоненты: [c.17]    [c.104]    [c.209]    [c.74]    [c.166]    [c.4]    [c.90]    [c.95]    [c.153]    [c.156]    [c.208]    [c.211]    [c.245]    [c.206]    [c.417]    [c.20]   
Смотреть главы в:

Реакции органических соединений -> Ароматические компоненты




ПОИСК







© 2025 chem21.info Реклама на сайте