Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Парафины ароматизация

    Ароматизация парафинов и нафтенов. Каталитическое дегидрирование нафтенов и циклизация — дегидрирование парафинов с образованием ароматических углеводородов представляют собой основные реакции риформинга. Обычные условия процесса мольное соотношение водород углеводород равно 4 1, давление составляет приблизительно 35 атм, а температура — 500° С. [c.377]


    Термический крекинг парафина. Термический крекинг тверд01 0 или мягкого парафина применяют в промышленности для целевого гюлучения жидких олефииов с прямой цепью из 5—20 атомов углерода. По технологии это производство во многом аналогично пиролизу и термическому крекингу нефтепродуктов. Расщепление также осуществляется в трубчатой печи, но при 550°С, когда еще не протекают глубокие процессы конденсации и ароматизации Для повышения выхода олефинов рекомендуется применять В0Д1Н0Й пар. Во избежание вторичных реакций проводят крекинг [c.44]

    Каталитическая ароматизация, включающая в себя потерю одной молекулы водорода, за которой следует образование кольца и дальнейшая потеря водорода, описана для многих парафинов (например, для н-гексана и -гептана) и парафинистых бензинов [275—281]. Превращение проводилось при атмосферном давле- [c.102]

    Основные соображения. При переработке нефти происходят следующие реакции изомеризация, гидрирование, дегидрирование, полимеризация, крекинг, циклизация, ароматизация, обессеривание и т. д. В большей или меньшей степени все эти реакции термодинамически возможны для углеводородных систем. Однако благодаря селективному действию катализатора и подбору условий процесса — давления, температуры — многие из этих реакций подавляются (скорость реакций становится незначительной), несмотря на то, что они могут быть термодинамически чрезвычайно благоприятными. Так, нанример, гидрокрекинг парафинов проводят только при высоких температурах, несмотря на то, что и при комнатных температурах происходящие при этом реакции характеризуются сильно отрицательными стандартными свободными энергиями. [c.374]

    Степень вовлечения парафиновых углеводородов в реакции ароматизации в процессе риформинга можно оценивать глубиной ароматизации и селективностью превращения в ароматические углеводороды. За глубину ароматизации принимаются отношения количества парафинов, превратившихся в ароматические, к общему количеству парафиновых углеводородов в сырье за селективность - отношение количества парафиновых углеводородов, превратившихся в ароматические, к общему количеству превратившихся парафиновых углеводородов. [c.9]

    Влияние температуры и давления на глубину ароматизации (1,2,3) и степень превращения парафинов (4,5,6) при риформинге фр.85-180°С. [c.10]

    Влияние температуры и давления на глубину ароматизации (1,2) и степень превращения парафинов (3,4) при риформинге фр. 62-180 °С. [c.11]


    Влияние температуры и давления на селективность ароматизации парафинов в процессе риформинга. [c.13]

    Эта реакция является обратной по отношению к реакции ароматизации н-парафинов. Так как [c.300]

    В настоящее время совершенно четко определилось, что для получения ароматических углеводородов наиболее технически совершенными являются каталитические методы ароматизации нафтенов и парафинов. [c.287]

    Химический состав сырья при заданных условиях процесса определяет также выход водорода при риформинге. Чем меньше парафинов в сырье, тем выход водорода выше, так как снижается его потребление на реакции гидрокрекинга. Для получения катализата с заданным содержанием ароматических углеводородов из фракций данного бензина нужны тем менее жесткие условия риформинга, чем выше интервал кипения фракции, так как с увеличением числа углеродных атомов в углеводородах данного строения растут и термодинамически возможный выход ароматических углеводородов, и скорость ароматизации. Содержащиеся в сырье ароматические углеводороды ограничивают термодинамически воз- [c.256]

    Суммарный тепловой эффект риформинга складывается из тепла экзотермичных реакций гидрокрекинга и эндотермичных реакций ароматизации (дегидрирования и дегидроциклизации). С повыще-Н ием содержания в сырье нафтеновых углеводородов роль гидрокрекинга при получении катализата заданного качества снижается и эндотермичность процесса растет. С увеличением глубины риформинга концентрация циклопарафинов снижается, а парафинов вследствие меньшей скорости реакций повышается, поэтому повышается и роль реакций гидрокрекинга в результате эндотермичность процесса снижается. В зависимости от качества сырья и катализата тепловой эффект может изменяться в очень широких пределах— от —210 до —840 кДж/моль (От —50 Ьо —200 ккал/кг) сырья. [c.258]

    Ароматизация (дегидроциклизация) парафинов [c.5]

    Таким образом, в сравнении со скоростью дегидрирования циклогексана скорости дегидрирования его гомологов больше. Однако эти различия невелики, в особенности если сопоставить их с соответствующими зависимостями для реакций ароматизации парафинов. [c.12]

    Как видно из кривых рис. 2.6, полученных при риформинге широких бензиновых фракций 85-180 °С и 62-180 °С, влияние температуры на селективность превращения парафинов в ароматику имеет криволинейный характер. Селективность минимальна в области температур 480-490 °С (входные температуры в реакторы, как правило, на 10 ° выше). Снижение температуры ниже 480 °С приводит к увеличению селективности, также как и увеличение выше 490 °С, что объясняется изменением соотношения скоростей реакций ароматизации и гидрокрекинга в пользу первых. [c.12]

    Первая из этих реакций — каталитическая ароматизация, получившая также название С -дегидроциклизация, исходя из числа атомов углерода, входящих в образующийся цикл. Вторая реакция, в результате которой получаются пятичленные нафтены, известна как Св-дегидроциклизация. В условиях каталитического риформинга Сь-дегидроциклизация также ведет к превращению парафинов в ароматические углеводороды, так как образующиеся циклопентаны подвергаются дегидроизомеризации. [c.27]

    Ниже мы рассмотрим поведение парафинов при ароматизации в условиях каталитического риформинга. <. [c.28]

    В современных промышленных процессах каталитического риформинга, осуществляемых на более активных катализаторах и при более низких давлениях, степень ароматизации парафинов (в %) выше и, в зависимости от числа углеродных атомов в молекуле, меняется в следующих пределах [211  [c.30]

    Как ВИДНО ИЗ табл. 10.5, в условиях каталитического рифор — мин1а наиболее легко и быстро протекают реакции дегидрирования гомологов циклогексана. Относительно этой реакции скорость аро — мати зации из пятичленных нафтенов примерно на порядок ниже. Наиболее медленной из реакций ароматизации является дегидро — циклизация парафинов, скорость которой (на два порядка ниже) лимитируется наиболее медленной стадией циклизации. [c.179]

    Вследствие изменения соотношения скоростей ароматизации и гидрокрекинга увеличивается селективность превращения парафиновых углеводородов в ароматические. Снижение давления с 2,8 до 0,7 МПа позволяет увеличить селективность превращения парафинов в ароматику более, чем в [c.18]

    Наиболее часто используемые химическая схема и математическое описание каталитического риформинга на платиновом катализаторе были приведены на стр. 114. Эти данные позволяют определять теплоты процесса, проводить оптимизационные расчеты при управлении. Вместе с тем исследования последних лет [29, 30] уточняют и дополняют схему превращений при платформинге. В этой схеме не учитывали изомеризации углеводородов и прчмой ароматизации парафинов. Однако показано, что в условиях платформинга парафины циклизуются преимущественно в пятичленные нафтеновые и ароматические углеводороды. Вклад реакции Сб — циклизации определяется строением исходного углеводорода. Так, при риформинге 2,4-диметилпентана образуется до 18,6% (масс.) пятичленных нафтенов, в то время как при риформинге н-гептана — не более 13% [30]. [c.146]


    В этой главе рассмотрены реакции, протекающие с выделени- ем водорода (дегидрирование, циклизация, ароматизация) и с его поглощением (гидрирование, гидрогенолиз С—С, С—3, С—О, С—Ы-связей). Некоторые из этих реакций можно рассматривать как прямую и обратную стадии одной обратимой реакции гидрирование — дегидрирование, циклизация парафинов в нафтены — гидрогенолиз нафтенов и т. д. Для нужд тех-, нологии, однако, приходится выявлять условия, благоприятствующие протеканию реакции или только в прямом, или только в обратном направлении. [c.293]

    Еще в 1946 г. Наумовым [91 ], вероятно, впервые было строго доказано на примере реакции изомеризации окиси этилена, что механическая смесь двух компонентов (силикагеля и окиси алюминия) в условиях, исключающих их взаимодействие (температура 200° С), обладает значительно более высокой активностью, чем каждый из компонентов в отдельности. В 1958 г. метод механического смешивания платинированного угля с алюмосиликагелем был предложен для получения активных катализаторов гидродеалкили-рования [92]. В 1964 г. Никс и Вейз показали эффективность такого приема при проведении ароматизации парафинов на смеси алюмосиликатного и дегидрирующего платинового катализаторов [93]. В настоящее время полифункциональные катализаторы широко применяют в основном в процессах превращения углеводородов [94, 95]. Чтобы провести сложное превращение веществ, приходится иметь дело с многоступенчатым процессом, протекающим в виде серии последовательных и параллельных реакций. В этом случае часто недостаточно эффективно применять один катализатор, так как при этом ускоряется лишь одна ступень процесса. [c.47]

    До 1936 г. ароматизация углеводородов жирного ряда была основана лишь на глубокой термической обработке. Превращение парафинов в ароматику имело место при парофазном крекинге и пиролизе, специально предназначенном для термической ароматизации нефтепродуктов. [c.287]

    Содержание ароматических углеводородов в жидких продуктах, получаемых при разных процессах ароматизации, составляет от 30—60% (катализат риформиига) до 95—97% (сырой бензол и смола коксования каменного угля). Из других углеводородов в них присутствуют олефины (от 2—3 до 15%), парафины 1 иафте-ны. Кроме того, в продуктах коксования находятся некоторые кислородные соединения (фенол, кумарон), пиридиновые основания, а также сернистые гетероциклические соединения (тиофен, тиото-леи, тионафтен), по температуре кипения близкие к еоответстную-щим ароматическим углеводорс там. [c.69]

    Пропускание углеводородов над АПК при высоких температурах приводит к быстрому их закоксовыванию и падению активности. В случае пропускания через катализатор смеси углеводородов и водорода под средним давлением падение активности, селективности и образование на нем кокса заметно замедляются. Это объясняется быстрой стадией диссоциации адсорбированного водорода на металле, а также миграцией, натеканием (спилловером) атомов водорода через границу фаз к носителю и гидрированием ненасыщенных соединений как на металле, так и на носителе. Спилловеру водорода способствует повышение дисперсности платины, температуры, давления, содержания хлора и модифицирование носителя. Однако чрезмерное повышение парциального давления водорода способствует уменьшению ароматизации парафинов из-за параллельного протекания конкурентной реакции гидрокрекинга. [c.147]

    Pt-Ir -катализатор обладает большей активностью и селективностью в реакциях дегидроциклизации парафинов и меньшей активностью в реакциях ароматизации нафтенов, по-видимому, из-за влияния геометрического фактора и коксообразования. По активности и стабильности Pt-Ir/Al20 превосходит не только АПК, но и Р1-Не/А1г(3 (рис. 6.13). Высокая стабильность катализатора K-Ir/AljOj обусловлена ни4кой скоростью коксообразования, которое подавляется даже при незначительном содержании иридия. [c.154]

    Механизтл ароматизации парафинов значительно менее ясен, механизм ароматизации циклопарафинов. Возможны следующие пути ароматизации. [c.249]

    Имеющиеся экспериментальные данные показывают, что ароматизация может идти по всем этим путям, но на катализаторах, не содержащих кислотных активных центров, с меньшей скоростью. Изомеризация и раопад карбоний-ионов приводят к образованию изопарафинов. Гидрогенолиз на металлических активных центрах дает низшие парафины  [c.251]

    В широко применяемых катализаторах риформинга платина нанесена на окись алюминия, обработанную галоидом (хлором или фтором), и юислотная активность катализатора определяется содержанием в нем этого галоида. При низкой кислотной активности катализатора глубина ароматизации циклопентанов мала и катализат риформинга содержит много нормальных парафинов, выход его велик, но октановое число невысокое. При высокой кислотной активности катализатора парафиновые углеводороды в условиях риформинга изомеризуются настолько быстро, что уже в начальных стадиях процесса достигается равновеоие парафины изопарафины и далее идет интенсивный гидрокрекинг. Кроме того, высокая кислотная активность приводит к ускорению изомеризации [c.253]

    Большое значение имеет химический состав сырья. При значительном содержании в сырье циклопарафинов, особенно циклогексанов, их ароматизация, протекающая с большой скоростью, приводит к образованию ароматических углеводородов в количествах, больших, чем термодинамически равновесные для соответствующих парафинов. Поэтому парафиновые углеводороды в этом случае не ароматизуются и подвергаются только изомеризации и гидрокрекингу. [c.256]

    Химическое равновесие. Неоднократно проводились термодинамические расчеты с тем, чтобы установить, какие условия осуществления процесса аталитического риформинга благоприятны для протекания реакций ароматизации парафинов [5, б, 8, 9, 55]. Примером может служить реакция ароматизации -гептана. Очевидно, высокие температуры и низкие давления способствуют более полному превращению -гептана в толуод (рис, 1,9). При обычных температурах каталитического риформинга (на входе в реакторы 500 °С) степень превращения -гептана в толуол, равная 95%, может быть достигнута при давлениях, не превышающих 1,5- -1,7 МПа. При этом изменение молярного отношения водород углеводород в пределах 4 1 до 10 1 не оказывает существенного в.цияния на степень превращения -гептана в толуол. [c.28]

    Скорость ароматизации нормальных парафинов зависит от числ углеродных атомов в молекуле. Приводим массовый выход ароматических углеводородов при риформинге (в % на сырье) в одинаковых условиях (490 °С, 4 МПа) на катализаторе 0,4% Р1/А120з+ - - 0,5% Р [621 -гексана —0,8, -гептана —6,7, -октана —14,7, и -нонана —21,7. [c.30]


Смотреть страницы где упоминается термин Парафины ароматизация: [c.187]    [c.190]    [c.135]    [c.172]    [c.182]    [c.323]    [c.339]    [c.18]    [c.53]    [c.54]    [c.54]    [c.482]    [c.486]    [c.17]    [c.121]    [c.248]    [c.257]   
Химия и технология синтетического жидкого топлива и газа (1986) -- [ c.234 , c.236 , c.237 ]

Переработка нефти (1947) -- [ c.36 ]

Реакции органических соединений (1966) -- [ c.572 ]




ПОИСК





Смотрите так же термины и статьи:

Ароматизация



© 2025 chem21.info Реклама на сайте