Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетическое описание

    Каким образом катализатор может влиять на химическую реакцию Если принять, что катализатор в заметной степени при реакции не расходуется, то термодинамически можно показать, что его роль в реакции не заключается в изменении точки равновесия, а сводится к ускорению достижения равновесия. Однако в большинстве химических систем имеются метастабильные состояния, обладающие свободной энергией, промежуточной между свободной энергией реагирующих веществ и состоянием равновесия. Мы можем приписать специфичность катализатора его свойству увеличивать скорость достижения одного из таких промежуточных состояний, а не общему ускорению в направлении достижения состояния с наименьшей энергией. Так как катализатор влияет на скорость реакции и не влияет на состояние равновесия, невозможно дать общее кинетическое описание поведения катализаторов. Болес полно проанализировать поведение катализатора можно, только зная конкретный механизм, по которому протекает данная реакция. Однако целесообразно провести классификацию катализаторов по строению и связанному с ним действию катализаторов на тип реакций, протекающих по данному механизму. Для твердых тел обычно принимают следующую классификацию  [c.531]


    Кинетическое описание ферментативных реакций в нестационарном режиме связано с определенными математическими трудностями. Например, для анализа реакции, протекающей по схеме Михаэлиса — Ментен (схема 5.1), необходимо решить систему дифференциальных и алгебраических уравнений (5.2)—(5.5). Формально-кинетический анализ ферментативных реакций развивается как по пути использования численных методов интегрирования систем дифференциальных уравнений, так и по пути использования аналитических методов. Аналитическое решение имеет определенные преимущества. Поэтому важно указать, что аналитическое решение системы дифференциальных и алгебраических уравнений может быть существенно упрощено, если при использовании определенных условий систему можно трансформировать в линейную систему уравнений. Развитие методов нестационарной кинетики ферментативных реакций идет именно по этому пути. [c.175]

    Совпадение значений энергий активации и однотипность кинетического описания процессов гелеобразования в растворах АС и кремниевой кислоты указывают на близость химизма процессов и позволяют применить теорию гелеобразования в растворах кремниевой кислоты и для растворов алюмосиликатов. Процесс гелеобразования в растворах, содержащих кремниевые кислоты, сложен. Он включает реакции полимеризации и деполимеризации, приводящие к образованию мицелл золя и их соединению в гелеобразующие агрегаты. Скорость гелеобразования зависит как от степени устойчивости коллоида, так и от скорости протекания реакции полимеризации кремниевой кислоты [83]. Однако скорость гелеобразования в растворах алюмосиликатов существенно ниже, чем в кислотных растворах жидкого стекла. Данное явление указывает, что в случае алюмосиликатов процесс замедляется из-за появления дополнительной стадии процесса - гидролиза алюмосиликата с образованием реакционно способных низко-молекулярных олигомеров кремниевой кислоты. Схему реакции гелеобразования в растворах АС можно представить в следующем виде  [c.155]

    Рассмотрим для примера систему реакций, представляющих собой кинетическое описание процесса образования бромистого водорода  [c.19]

    Однако реакция 3 является комбинацией первой и второй. Следовательно, для кинетического описания (моделирования) этой сложной реакции достаточны любые две независимые реакции из трех.  [c.17]


    Кинетическая система не находится в состоянии равновесия. Подчиняясь первому закону термодинамики (сохранение энергии), она свободна от ограничений второго закона. Чем меньше ограничений накладывается на систему, чем больше степеней свободы она имеет, тем труднее ее описать. Действительно, как будет видно из дальнейшего, эта трудность становится одним из реальных препятствий на пути удовлетворительной кинетической обработки. Однако основное препятствие для кинетического описания химических систем заключается во множественности существенно неравновесных факторов, которые могут играть решающую роль в определении пути реакции. Таким образом, априори нельзя сформулировать те положения, которыми определяется адекватное описание кинетической системы. В этом нетрудно убедиться на следующем простом примере. Вода, находящаяся на вершине холма, может быть описана уравнениями равновесного состояния. В некоторый следующий момент времени вода может стечь в озеро у основания холма. Оба эти состояния (исходное и конечное) могут быть описаны совершенно точно, и можно определить разности энергий этих состояний. Однако если попытаться описать сам переход, т. е. процесс течения воды с вершины холма, то будет видно, что он может зависеть почти от бесчисленных факторов от наличия стоков, контура склона холма, структурной устойчивости контура, множества подземных каналов в холме, через которые может проникать вода, и т. п. И наконец, если на холме будет кем-либо пробурена скважина, то появится необходимость в тщательном экспериментальном исследовании для того, чтобы учесть и этот дополнительный фактор, влияющий на течение воды. [c.14]

    При разработке процесса (подбор состава катализатора, оптимального режима) и решении задач оптимального управления путь получения математического описания произволен. Однако и здесь приходится отдать предпочтение физико-химическому подходу. При этом удается учесть все накопленные ранее ведения о процессе и тем самым резко сократить объем информации, необходимой для составления описания. Особенно ценно, что использование кинетических описаний исключает ошибочную информацию, противоречащую, например, материальным и тепловым балансам. [c.54]

    Кинетические описания, позволяющие решать любые задачи оптимизации химических процессов, являются более универсальными, чем статистические, однако они значительно сложное. [c.54]

    Теория абсолютных скоростей реакций описывает реакционные свойства частиц на основании особенностей строения исходных веществ и активированного комплекса. Поэтому при кинетическом рассмотрении любые бимолекулярные реакции следует считать процессами, протекающими с изменением числа частиц в исходном состоянии — две, а в переходном — одна (активированный комплекс). Реакции рекомбинации и с термодинамической точки зрения протекают с изменением числа частиц Аг = 1. Так как кинетическое описание основано в значительной степени на термодинами-ч еских представлениях, то можно полагать, что определение факторов, вносящих основной вклад в термодинамические характеристики (А5 и АЯ) реакций рекомбинации, позволит понять особенности кинетики (т. е, А5+ и АЯ+) этих реакций. [c.89]

    Сложная зависимость скорости регенерации от различных факторов и переход реакции из одной области в другую усложняют кинетическое описание процесса в це.иом. Поэтому рядом авторов разработаны для регенерации уравнения, описывающие скорости окисления кокса в отдельных областях. В частности, для кинетической области предложено [121] следующее уравнение [c.152]

    Кинетическое описание трехстадийных ферментативных реакций [c.144]

    Соблюдение внутренней логики науки (термодинамическая часть описания должна предшествовать кинетической, описание или изучение вещества осуществляется в последовательности закономерностей перехода с одного уровня организации вещества на другой и т. д.). [c.9]

    Учет нестационарности особенно необходим для процессов с изменяющейся активностью катализатора, таких, как каталитический крекинг или дегидрирование, где стационарное состояние не успевает установиться за время работы катализатора, ограниченное побочными процессами углеотложения. Отметим, что формальное кинетическое описание реакции в стационарном и нестационарном режимах существенно различается и в последнем случае резко усложняется примеры некоторых кинетических моделей для нестационарных режимов будут даны в 5.1. [c.82]

    Немалая сложность кинетического описания ферментативной деструкции полимеров обусловлена тем, что, в отличие от простых субстратов (содержащих лишь один реакционный центр на молекулу), полимерные субстраты предоставляют ферментам широкие возможности для способов атаки. [c.77]

    З. КИНЕТИЧЕСКОЕ ОПИСАНИЕ ЭФФЕКТА МНОЖЕСТВЕННОЙ АТАКИ [c.93]

    Необходимо отметить, что при описании скоростей протекания реальных химико-технологических процессов приходится прибегать к более сложным математическим средствам, чем это следует из положений формальной кинетики, В случае реальных процессов кинетическое описание часто дополняют характеристиками среды, исходных и конечных веществ, особенностей аппаратурно-технологического оформления. Полезным методом исследования и установления кинетических характеристик является использование сведений об элементарных актах химического взаимодействия, что имеет большое значение для нахождения путей совершенствования технологии. Ниже рассмотрены кинетические особенности некоторых технологических процессов. [c.204]


    Все изложенное свидетельствует о том, что даже в случае простых химических превращений кинетическое описание их представляет собой достаточно сложную задачу. Реальные же кинетические превращения в большинстве случаев представляют собой совокупности параллельных и последовательных реакций, для каждой из которых необходимо прежде всего рассчитать значения констант скоростей. [c.177]

    Нами было доказано [41, что групповые компоненты, природные и образующиеся в самом процессе крекинга, резко отличаются друг от друга. Поэтому кинетическое описание крекинга сложной смеси групповых компонентов природного происхождения затруднительно. В свете рассматриваемого эксперимента такое кинетическое описание оказалось бы неверным, так как не учитывало бы взаимного влияния групповых компонентов при их совместной деструкции. Кинетика образования карбоидов и летучих при коксовании гудрона удовлетворительно описывается уравнениями, используемыми при описании коксования смол  [c.222]

    В результате изучения кинетики ренатурации целого ряда белков стали известны некоторые детали процесса свертывания-развертывания полипептидной цепи. Однако ни в одном случае эта работа не была доведена до логического конца, т.е. до установления конкретного механизма сборки и его количественного структурного, термодинамического и кинетического описания как многоступенчатого, взаимообусловленного на всех своих стадиях процесса. Не получили объяснения побудительные мотивы ренатурации, определяющие скорость процесса и его безошибочность, и, самое главное, возможность спонтанного перераспределения энтропии, т.е. самопроизвольного возникновения порядка из беспорядка. Уже десятки лет прогресс в этой области в теоретическом плане сдерживается из-за отсутствия количественной информации о состоянии и конформационных возможностях белковой цепи на разных стадиях ее самоорганизации и [c.471]

    Уравнение такого рода может пметь двоякнй смысл. Во-первых, оно может представлять собой кинетическое описание [c.14]

    Надо отметить, что в катализе одинаково важны как физичес — кие так и химические закономерности каталитического действия. Так без знания химической сущности (то есть "химизма") катализа невозможен научно обоснованный подбор типа и химического сос ава катализатора. А кинетическое описание каталитической реакции на данном катализаторе невозможно без знания закогЕО — мерностей физических (точнее физико-химических) процессов, протекающих на границе раздела фаз, например, адсорбционных (хемосорбционных) процессов. [c.85]

    Спивак С. Я., Масанутов Р. М. Кинетическое описание и дискриминация механизмов дезактивации катализаторов И Проблема дезактивации катализаторов Сб. науч. тр. Новосибирск Наука, 1985. Ч. 2. С. 72—93. [c.358]

    В условиях гидрокрекинга резко ослабляются реакции обн т-пого крекинга и коксообразования. Это свидетельствует о сильном экранировании поверхности катализатора водородом п активации адсорбированного водорода. Однако при значигельно г разбавлении сырья гидрокрекинга водородом его парциальное давление в ходе процесса меняется незначительно и может быть принято постоянным. При этом для формального кинетического описания можно пользоваться уравнением [10]  [c.354]

    Изучение многочисленных реакций присоединения радикалов к ароматическим и другим сопряженным соединениям свидетельствует о том, что имеется существенная зависимость между константами скорости этих реакций и природой атомов субстрата и реагента, между которыми образуется а-связь. Таким образом, активированный комплекс этих реакций должен быть а-комплексом. Следуя работам Эванса, Поляни, Шворца и их сотр., рассмотрим более подробно модель реакции (18.1), которая послужит основой для кинетического описания этих реакций [31, 104, 265]. [c.170]

    Для кинетического описания даже простейшей двухстадийной односторонней мономолекулярной реакции требуется составлять и решать систему дифференциальных уравнений. Если число стадий превышает две и некоторые из них являются бимолекулярными или тримолекулярными, то математические соотношения усложняются. В связи с этим в химической кинетике используются приближенные методы, позволяющие упростить математические расчеты. Таким широко распространенным приближенным методом служит предложенный Боденштейном метод стационарных концентраций. [c.327]

    Выход бензина проходит через максимум, величина которого падает в ряду циркулирующий газойль<ароматические углево-дороды<парафины<нафтены. Скорость крекинга бензина мала, и отношение скоростей образования и распада составляет 14,3, что указывает на высокую селективность процесса. Предложенное кинетическое описание позволяет также рассчитать групповой состав легкого и тяжелого газойлей, что весьма важно при решении вопросов их использования для повторного крекинга. На рис. 4.18 приведены данные, показывающие хорошее сбвпадение эксперимента (точки) и теоретических расчетов (кривые) для состава тяжелого газойля. С ростом конверсии сырья в тяжелом газойле наблюдается четкое снижение содержания парафиновых, нафтеновых и алкилароматических углеводородов, а характер [c.113]

    Однако в целом кинетическое описание процесса пиролиза является до настоящего времени трудной задачей. Так, начальные скорости заметно падают с уменьшением давления, а рассчитанные константы скорости реакции первого порядка снижаются (на 40—60 %) с ростом конверсии (до 50 %). Это снижение иногда объясняют ингибированием реакции целевыми продуктами (особенно пропиленом и высшими олефинами). Водород оказывает сильное влияние на скорость, увеличивая ее иногда на 100—200 % причиной этого является замена радикалов СНд- и jHg- на более реакционноспособные Н- (по реакции R- + Н2-> RH + Н-). [c.37]

    Большое разнообразие ферментов-деполимераз, действующих зачастую на один и тот же субстрат, безусловно, затрудняет кинетическое описание путей деструкции полимера. С другой стороны, эта особенность действия деполимераз показывает, что весьма актуальной задачей ири создании общей концепции ферментативной деградации полимеров является разработка кинетической теории действия полиферментных систем. Современное состояние этой проблемы отражено в четвертой главе настоящего раздела. [c.8]

    Наибольший интерес представляют кинетическое описание протяженных кривых ферментативной деградации полимеров и выявление соответствующих кинетических закономерностей. С этим вплотную связана проблема разработки методов оценки биополимеров с точки зрения их атакуемости ферментами, а также в отношении оценки перевариваемости белков протеазами [22—25]. Иэ немногочисленных количественных данных в литературе по ферментативной деградации биополимеров видно, что для них свойственно ингибирование низкомолекулярньши продуктами реакции (см. [22, 26—32]), При этом в большинстве случаев выводы об ингибировании продуктами были сделаны при кинетическом анализе так называемых полных кривых ферментативной деградации биополимера, или протяженных участков кинетических кривых, с помощью известных методов ферментативной кинетики (например, используя интегральную форму уравнения скорости, см. [21]). В ряде случаев не исключена возможность некоторого действия ингибирования продуктами так, в работе [33] выдвинуто и обосновано положение, что формально-кинетический анализ протяженных участков кинетических кривых ферментативной деградации полимеров практически неизбежно приводит к кажущимся эффектам ингибирования продуктами, даже если продукты не связываются с ферментом и ингибирование на самом деле отсутствует. Этот эффект наблюдается для ферментов, реакционная способность которых уменьшается при увеличении степени конверсии полимерного субстрата (за счет уменьшения степени полимеризации субстрата или доли наиболее реакционноспособных (доступных) связей в молекуле полимера). Подобные ферменты составляют подавляющее большинство ферментов-деполимераз (см. табл. 1). [c.30]

    Когда применение методов термодинамики неравновесных процессов (т.е. кинетико-термодинамического анализа) является более предпочтительным, чем применение методов традиционного чисто кинетического описания Почему  [c.109]

    Понятие о химической кинетике. Скорость химических реакций. Термодинамический подход к описанию химических процессов позволяет оценить энергию взаимодействия и наиболее вероятные направления протекания реакций. При этом нет необходимости прибегать к конкретному рассмотрению механизма процесса, к экспериментальному его осуществлению. Однако классическая термодинамика рассматривает только равновесные системы и равновесные процессы, т. е. процессы, которые протекают бесконечно медленно. С термодинамических позиций невозможно анализировать развитие процесса во времени, поскольку время (как переменная) не учитывается при термодинамическом описании. Поэтому вторым этапом в изучении закономерностей протекания химических процессов является рассмотрение их развития во времени, что представляет собой основную задачу химической кинетики. В реальных уело-ВИЯХ протекание химических реакций связано с преодолением энергетических барьеров, которые иногда могут быть весьма значи тельными. Именно поэтому термодинамическая возможность осуществления данной реакции (AG<0) является необходимым, но недостаточным условием реализации процесса в действительности. Хи мическая кинетика кроме выяснения особенностей развития процесса во времени (формально-кинетическое описание) изучает [c.212]

    Молекулярность реакции представляет собой молекулярно-кинетическую характеристику системы, а понятие о порядке реакции следует из формально-кинетического описания. Для простых гомогенных реакций, протекаюших в одну стадию, эти два понятия совпадают, т. е. мономолекулярная реакция соответствует реакции первого порядка, бимолекулярная — реакции второго порядка, три-молекулярная — реакции третьего порядка. Для сложных реакций, протекающих в несколько стадий, формальное представление о порядке не связано с истинной молекулярностью реакций. Поэтому при формально-кинетическом описании таких процессов встречаются реакции дробного, нулевого и даже отрицательного порядка по одному из компонентов. Например, каталитическое разложение аммиака на поверхности вольфрама описывается уравнением и = А (реакция нулевого порядка, скорость которой не зависит от концентрации реагентов), разложение фосфина на стекле протекает в соответствии с уравнением и = йСрн (реакция первого порядка), стибин на твердой сурьме диссоциирует со скоростью ii = /e sbH, (реакция дробного порядка). Окисление оксида углерода, протекающее по уравнению 2С0-Ь02->2С02 на платиновом катализаторе, подчиняется зависимости v = k( o2/ o), т. е. эта реакция имеет порядок [c.216]

    Точный физический смысл констант и (энергия активации) можно раскрыть только для реакций, идущих в од11у стадию. В действительности же эти константы, относящиеся к формально-кинетическому описанию системы, позволяют судить лишь приближенно о преобладающем механизме контроля реакции, В зависимости от условий окисления кремния величины и Е могут изменяться. Например, при окислении в сухом кислороде при КХЮ—1100°С рост пленки Si02 определяется уравнением [c.114]

    Типичная кинетическая кривая впитываемости рабочих растворов в бумагу-основу представляет собой сигмоидную кривую, состоящую из трех участков смачиваемости, капиллярной впитываемости и диффузии. На современных скоростных наносных машинах этап диффузии в полной мере не реализуется, поэтому он и не является с точки зрения описания процесса определяющим. Основными являются два первых этапа. Для кинетического описания процесса принципиально можно использовать два уравнения. Уравнение Пуа-зейля [c.147]

    Варианты индивидуальных заданий провести балансоный эксперимент, найти зависимость степени конверсии исходного углеводорода от условного времени пребывания и предложить вариант кинетического описания процесса получить зависимость селективности реакции (по группам соединений) от конверсии исходного углеводорода и от температуры, [c.214]

    Из-за несовершенства анализа реакционной массы (алкилата) примерно до середины 80-х годов XX века кинетическое описание синтеза ВАФ оставалось приближенным по убыванию концентрации олефина, Ф или накоплению суммы продуктов алкилирования с использованием для расчета констант скорости уравнений I или II порядков (исследования Е.П.Бабина, В.Г.Плюснина, Л.А.Потолов-ского, Л.Н.Шкарапута и др.). Лишь недавно на основе современных достижений хроматографии разработаны (В.А. Заворотным) кинетические схемы (2 и 3) образования всей гаммы продуктов алкилирования, которые различаются для олефи-нов линейного (п. олефинов) и разветвленного (изоолефинов) строения  [c.7]


Смотреть страницы где упоминается термин Кинетическое описание: [c.15]    [c.37]    [c.132]    [c.169]    [c.77]    [c.123]    [c.124]    [c.135]    [c.45]    [c.213]    [c.412]    [c.129]   
Смотреть главы в:

Сетчатые полимеры -> Кинетическое описание

Кинетика топохимических реакций -> Кинетическое описание




ПОИСК







© 2025 chem21.info Реклама на сайте