Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Задачи химической кинетики

    Если исследуемая реакция является сложной и протекает как ряд параллельных и последовательных превращений, представляющих собой отдельные стадии всего химического процесса, и, если все параметры, включая порядки реакций, неизвестны, то расшифровка кинетической схемы процессов и определение значений кинетических параметров является сложной задачей. Этой проблеме в настоящее время посвящено много работ [2, 7, 8]. Здесь рассмотрим некоторые наиболее, на наш взгляд, существенные и близкие к предмету книги методы решения указанного типа задач. Последним можна дать наименование обратные задачи химической кинетики , поскольку в них по известному решению, найденному экспериментально, должны быть определены структура и параметры уравнений кинетической модели. [c.427]


    Одной из главных задач химической кинетики является установление связи менаду строением веществ и их реакционной способностью. Это предусматривает возможность расчета констант скоростей реакций на основе знания молекулярных свойств веществ. [c.523]

    Рассмотрим наиболее типичные задачи химической кинетики [47]. [c.228]

    Конкретная структура математических уравнений и способов обработки данных зависит от экспериментального метода проведения кинетических исследований. Для дифференциальных реакторов это будет система алгебраических уравнений, для изотермических интегральных реакторов — система дифференциальных уравнений, сравнительно просто линеаризуемых в отношении констант, для неизотермических интегральных реакторов — система дифференциальных уравнений, нелинейных относительно констант. Следует отметить, что успехи в области решения нелинейных задач химической кинетики и поисковых методов [4, 15—17] позволили создать эффективные алгоритмы, обеспечивающие практически одинаковую достоверность в определении структуры кинетических уравнений и входящих в них констант для любого экспериментального метода кинетических исследований. [c.77]

    Монография посвящена методам математического моделирования на ЭВМ кинетики химических реакций. Рассмотрены методы решения прямой и обратной задач химической кинетики, преобразование Лапласа, метод классических траекторий, методы качественной теории обыкновенных дифференциальных уравнений, метод Монте-Карло и др. Приведены программы решения некоторых задач химической кинетики на ЭВМ. [c.2]

    Термодинамика не дает никаких сведений о времени, необходимом для достижения равновесия это уже неоднократно подчеркивалось выше. Термодинамика лишь сопоставляет исходное и конечное состояние реагирующей системы, характеризуя их такими функциями состояния, как Т, Р, V, Е, Я, 5 и С. Изменения этих величин не зависят от того, протекает реакция за наносекунду (10 с) или за эон (10 лет), а также от того, осуществляется реакция в одну стадию или в тысячу стадий, при условии что исходное и конечное состояния системы в каждом случае одни и те же. В отличие от этого кинетика занимается изучением скорости протекания реакций. Камень, скатывающийся по склону горы, останавливается и остается сколь угодное время неподвижным, если он встречает на своем пути барьер, высота которого может составлять даже небольшую часть высоты самой горы. Если этот камень будет случайно потревожен прохожим, вероятность того, что за определенный промежуток времени он перескочит через препятствие и продолжит скатываться с горы, зависит среди прочих факторов и от высоты барьера. Задачей химической кинетики является исследование барьеров химических реакций и установление их роли в замедлении реакций, а также путей преодоления барьеров при надлежащих химических условиях или их обхода при помощи катализаторов. [c.393]


    Приводится краткий обзор тех идей и методов, которые полезны применительно именно к задачам химической кинетики. Все теоремы н утверждения даны без доказательств. Читатель, знакомый с аппаратом статистики, может опустить этот раздел и перейти к следующему. [c.134]

    Этот метод должен быть эффективным, однако автору неизвестно работ, в которых проводилось бы достаточно надежное сравнение случайного поиска с градиентными методами. В целом методы прямого поиска в задачах химической кинетики не нашли столь широкого применения как градиентные методы. [c.222]

    Кинетическая. модель, состоящая из 9 стадий (Г (/ = = 1—8, 24)), рассматривалась в [40]. Модель также взята согласно рекомендациям [881. В физической постановке задачи химическая кинетика и гидродинамика разде- [c.341]

    Спивак С. И. Информативность эксперимента и проблема неединствен-пости решения обратных задач химической кинетики. Автореф. дне. ... д-ра физ.-мат. наук. Черноголовка, 1985. 30 с. [c.360]

    Расшифровки кинетических схем сложных химических реакций, определение их структуры и значений кинетических констант являются сложными задачами, объединяемыми термином обратные задачи химической кинетики . Изложение методов решения этих задач, выходящее за рамки настоящей книги, освещено в работах [4, 15-191. [c.78]

    Чтобы получить в единицу времени наибольшее количество вырабатываемого продукта, необходимо максимальное увеличение скоростей реакций, лежащих в основе того или иного химического процесса, С другой стороны, вредные, нежелательные процессы — коррозию металлов, окисление каучука — необходимо как можно больше замедлить. Поэтому изучение законов химической кинетики, открывающее путь к сознательному регулированию скоростей реакций, имеет исключительно важное значение для практики. Управление химическим процессом является главной задачей химической кинетики. [c.139]

    Современное состояние теории элементарного химического акта и теории катализа позволяет определить лишь направления, по которым следует вести поиски катализаторов и условий процесса. Как правило, еще требуются большие экспериментальные исследования при создании новых высокоэффективных катализаторов и каталитических процессов. Одной из задач химической кинетики является выяснение возможности представления сложного химического процесса в виде стадий и определение скоростей, констант скоростей и энергий активации отдельных стадий. Эта задача частично решается в разделе химической кинетики, который получил название формальной кинетики химических реакций. [c.532]

    Основной задачей химической кинетики является расчет скоростей реакций и зависимости с = Щ). Для этого надо знать константы скоростей реакций, которые определяют из опытных данных. Для реакций первого порядка значения к могут быть найдены из (198.1) по скорости химической реакции и концентрации реагирующего вещества в момент времени Р. [c.536]

    Как это принято при решении задач химической кинетики, уравнение (4-6) представим в виде  [c.209]

    Одна из насущных задач химической кинетики состоит в получении кинетических кривых для быстрых реакций с помощью современных методов исследования можно решить эту задачу для многих реакций. Из подходящих для этой цели методов можно назвать осциллографический и полярографиче- [c.167]

    В книге с необходимой детальностью рассмотрены проблемы, связанные с решением прямой и обратной задач химической кинетики, а также с расчетом функций распределения, заселенностей квантовых уровней, их эволюции во времени и роли в химических реакциях. [c.6]

    К книге приложены две программы для ЭВМ, которые могут оказаться полезными при решении конкретных задач химической кинетики. [c.6]

    Как следует из определения жесткости, жесткая задача Коши должна иметь отрицательный спектр действительной части собственных значений якобиана. Однако может возникнуть ситуация, когда в локальной области якобиан системы уравнений имеет положительную действительную часть собственных значений. В задачах химической кинетики такая ситуация не редкость и встречается при описании взрывных процессов, когда в решении появляются резко растущие компоненты. В таких случаях сама задача Коши уже перестает быть устойчивой, и нельзя требовать устойчивости и численного метода. [c.132]

    Определение механизма химической реакции является специальной задачей химической кинетики, которую решают, используя современные физико-химические методы исследования. В связи с этим в химической кинетике введено понятие о простой реакции — реакции, которая реализуется одними и теми же элементарными актами. Условно можно сказать, что в этом случае элементарный акт отражен уравнением химической реакции. Примерами простых реакций могут служить реакции переноса одного электрона между двумя различными ионами в растворе, например  [c.54]


    Во многих задачах химической кинетики процессы взрывного характера происходят с большими временными задержками, математически это и означает медленное появление компоненты решения, соответствующего положительному корню якобиана. Для эффективного решения задач, описывающих такого рода процессы, был предложен особый класс численных методов, рассмотренных в следующем разделе. [c.142]

    Рассмотрим теперь вопросы применения метода Монте-Карло к задачам химической кинетики. Система разбивается на "среду" и ансамбль "пробных частиц", причем среда описывается феноменологически через такие параметры, как концентрации отдельных компонент, температура и др. Учитывается только взаимодействие пробных частиц со средой. Если обратиться к задачам кинетики, то можно сделать вывод, что с помощью такого метода можно изучать системы, состоящие из небольшой примеси молекул интересующего нас газа к молекулам основного газа, являющегося "термостатом". Соотношение концентраций примеси и термостата должно быть таково, чтобы можно было учитывать только столкновения молекул примеси и частиц термостата. Естественно, что в ряде случаев на такие упрощения можно и нужно согласиться. Принципиальным является вопрос о построении нелинеаризованной модели. Такая возможность в принципе имеется и состоит в использовании идеи "периодических граничных условий". [c.201]

    При низких давлениях проверка развитой выше теории радикально-цепного крекинга алканов, начинающегося на стенках и замедленного влиянием продуктов крекинга в объеме, была проведена расчетным путем для газообразных алканов в кандидатской диссертации И. Ф. Бахаревой [203). Для решения нелинейных дифференциальных уравнений (83), (92) и др. был впервые применен метод С. А. Чаплыгина [209], что позволило в отличие от других методов численного интегрирования получать решения в аналитической форме и оценивать погрешность расчета, а также оценить точность метода квазистационарных концентраций [210], широко применявшегося выше и вообще при исследовании разнообразных задач химической кинетики. [c.149]

    Совокупность всех стадий, из которых складывается процесс превращения исходных веществ в конечные продукты, называется механизмом химической реакции. В многостадийных реакциях общая скорость процесса определяется или лимитируется стадией с самой малой константой скорости. Такая стадия называется лимитирующей. В установившейся многостадийной реакции все стадии протекают с одинаковой скоростью, определяемой лимитирующим процессом. Выявление лимитирующей стадии в сложной многостадийной реакции — одна из важных задач химической кинетики. [c.314]

    Для решения ряда задач химической кинетики оказывается целесообразным использовать вместо концентрации безразмерную переменную. Для этого относят текущую концентрацию реагирующего вещества к исходной концентрации  [c.160]

    Поскольку во многих сложных реакциях принимают участие разнообразные элементарные реакции образования и превращения активных частиц — радикалов, ионов, ион-радикалов и т. д., то важной задачей химической кинетики становится изучение таких элементарных реакций. Эти реакции очень часто протекают с высокой скоростью, и поэтому для их исследования разработаны специальные методы и аппаратура. Полученные здесь результаты важны, во-первых, для проверки схем сложных химических процессов во-вторых, для решения ряда технических задач в-третьих, как основа для анализа вопроса о строении соединений и их реакционной способности. [c.7]

    Спектроскопия ЭПР применяется не столь широко, так как этим методом могут исследоваться лишь объекты, обладающие парамагнитным моментом, т. е. частицы (молекулы, радикалы, ионы и др.) с неравным нулю суммарным электронным спином, парамагнитные центры в кристаллах и т. д. При наличии эффекта ЭПР из спектра получают ценнейшую информацию о структуре и динамике изучаемых систем. Этим методом решают разнообразные задачи химической кинетики от выяснения механизмов простых свободно-радикальных реакций до изучения сложных биологических процессов и многие другие структурно-аналитические задачи. [c.7]

    При известном механизме сложной реакции это дает систему дифференциальных уравнений типа (6.4), решение которой при дополнительном условии (задание начальных концентраций С/, о при =0) и уравнениях материального баланса позволяет найти уравнение зависимости скорости сложной реакции от концентраций ее участников. Это так называемая прямая задача химической кинетики. [c.249]

    Термодинамика играет исключительно важную роль в решении задач химической кинетики. Эта роль термодинамики особенно возросла с развитием экспериментальных методов атомной и молекулярной физики, сделавших возможным вычисление важных для кинетики термодинамических величин на основе статистики и квантовой механики. Одной иэ таких величин, в частности, является константа равновесия, которая с точки зрения химической кинетики прежде всего представляет самостоятельный интерес как величина, определяющая предел измепонип химической системы при заданных условиях протекания реакции константа рапнов( Сия имеет такжэ большое вспомогательное значение, так как на основании известного значения этой величины может быть вычислена константа скорости обратной реакции если известна константа скорости прямой реакции. [c.10]

    В физической и коллоидной химии широко используется термодинамический метод, который дает возможность решать ряд важных задач, связанных с превращениями различных видов энергии, которыми сопровождаются химические процессы и фазовые переходы, а также с направлением химических процессов и равновесием. Не менее широко используется статистический метод для решения задач химической кинетики, равновесия и его смещения, кинетики адсорбционных и электрохимических процессов, кинетики процессов, протекающих в дисперсных системах. Ознакомление с указанными основополагающими методами, а также с другими физическими и физикохимическими методами исследования, которые излагаются в настоящем курсе, будет способствовать существенному повышению теоретического уровня знаний будущего учителя. [c.5]

    Одной из задач химической кинетики является количественное описание хода химической реакции во времени при постоянной температуре в зависимости от концентраций реагирующих веществ. Соответствующие математические соотношения ВЫ1ЮДЯТСЯ с помощью основного постулата химической кинетики (см. стр. 14). Раздел химической кинетики, в котором рас-смЁтриваются указанные вопросы, называется формальной кинетикой. [c.13]

    До сих пор рассматривались принципиальные основы статистических методов оценки параметров. Первоначально эти методы возникли в основном не как методы оценки параметров, а как методы получения эмпирических зависимостей, описывающих экспериментальные данные. Впоследствии об этой основной — содержательной — стороне этих методов было забыто. Но именно с этой позиции мы и б удем теперь рассматривать применение данных методов к задачам химической кинетики. [c.203]

    XI.6. Корректность обратных задач химической кинетики и планн [c.462]

    Для построения математической модели процесса катал1ггического риформинга требу гтся решение обратной задачи химической кинетики. Дпя многокомпонентных смесей с.тожного состава (при числе кол понентов 9-10) получить однозначное и статистически достоверное решение практически невозможно из-за слишком большого числа 1ребуемых экспериментов. Для построения модели из литературных источников были обобщены данные о кинетических параметрах реакций у леводородов и теоретических (ависимостях от условий процесса. После построения математической модели по литературным данным была проанализирована работа реального процесса на установке Л-35-11/1000. Практические данные позволили уточнить уже полученную модель. [c.226]

    В книге рассмотрены прямая и обратная задачи химической кинетики, решение жестких систем нелинейных обыкновенных дифференциальных уравнений, уравнение Паули (управляющее уравнение), метод классических траекторий, расчеты по теории Райса—Рамспергера—Касселя—Маркуса (РРКМ) и некоторые специальные физико-химические и вычислительные проблемы химической кинетики, связанные с новыми задачами, воз- [c.3]

    В задачах химической кинетики локальная жесткость может достигать величин порядка 10 —10 . Трудности решения жестких задач состоят в том, что при численном решении ограничение на шаг интегрирования может накладывать требование абсолютной устойчивости метода, связанное с малыми возмущениями, возникающими в процессе реализации метода на цифровой машине. Действительно, величина шага интегрирования должна выбираться так, чтобы Хп,а, Л принадлежало области абсолютной устойчивости метода. Таким образом, шаг интегрирования согласуется с характерным временем быстрого процесса 1/Яе(—Х ах)> в то время как характерное время медленного процесса 1/Re(—Xmin) много больше, и [c.131]

    В то же время аналитическое решение задач химической кинетики при рассмотрении ее совместно с другими релаксационными процессами (мак-свеллизация, колебательная релаксация и т. д.) в настоящее время невозможно [149]. Поэтому большой интерес представляет разработка численных методов, пригодных для решения широкого класса таких задач. В [55] изложены результаты расчетов на ЭВМ для задачи о максвеллизации бинарной смеси метана и аргона с разными начальными температурами (соответственно 300 и 40 ООО К). Оказалось, что процесс релаксации по поступательным степеням свободы протекает в два этапа. На первом, неадиабатическом этапе функции распределения молекул обоих газов существенно отличаются от максвелловских, причем высокоэнергетическое крыло функции распределения метана образуется практически мгновенно. Наличие этого крыла должно оказать существенное влияние на кинетику других релаксационных процессов (в частности, химических реакций), особенно в начальные моменты времени. [c.205]

    В-четвертых, в современной кинетике, как и в других естественных дисциплинах, возрастает роль математических методов и инструментов. Широко используется самая разнообразная компьютерная техника для обработки результатов кинетических опытов. Все чаще кинетическая установка сочленяется с ЭВМ для оперативной обработки результатов кипетпческих измерений, т. е. идет непрерывный процесс математизации эксперимента, С другой стороны, для теоретического анализа и описания сложных многостадийных реакций широко используются математические методы, часто проводится численное решение соответствующей системы уравнений на ЭВМ. Накоплен известный опыт в области так называемых обратных задач химической кинетики, когда по совокупности исходных данных восстанавливают (конструируют) механизм сложной реакции в виде соответствующей схемы. Иными словами, современная кинетика все теснее переплетается и использует результаты соответствующих разделов математики теории диф( ренциаль-ных уравнений, графов и т. д. [c.368]

    В настоящее время метод остановленной струи широко приме-ляется для решения многих задач химической кинетики установление механизмов химической реакции, определение стадий, лимитирующих протекание реакции обнаружение промежуточных комплексов, определение кинетики ферментативных реакций, установление числа и концентрации активных центров фермента, изучение быстрых конформационны5( переходов в белках и нуклеиновых кислотах. Метод требует быстрой регистрации это единственное существенное ограничение его применимости. Особое внимание при применении метода остановленной струи необходимо уделять тер-мостатированию, так как разница в температурах в кювете наблюдения и растворе смеси реагентов может привести к большим оптическим ошибкам, затрудняющим установление механизма наблюдаемой реакции. Точность определения констант скоростей данным методом примерно такая, как и при обычных спектрофотометрических измерениях кинетики химических реакций. [c.28]

    Определение механизма химической реакции. Установление механизма химического превращения— одна из наиболее сложных задач химической кинетики. Трудности возникают прежде всего потому, что одним и тем же кинетическим кривым, полученным экспериментально, может соответствовать множество различных механизмов реакции. Однако практически приходится рассматривать ограниченное число вероятных механизмов реакции. При этом с помощью АВМ можно сравнительно быстро просмотреть несколько механизмов и сразу отсеять те, которые ие согласуются с опытом, поскольку невозможность согласования расчетной кривои с эксиеримеитальной указывает на ошибочность данного механизма. Успешность такого метода определения истинного механизма процесса значительно возрастает с увеличением количества экспериментальных кинетических данных для исходных, промежуточных и конечных веществ, которые можно было бы сравнивать с расчст-кыми величинами. [c.348]

    Одна из задач химической кинетики состоит в определении порядка реакции (т и п) по отдельным компонентам. Лишь редко случается, что лорядок реакции по данному компоненту совпадает со стехиометрическим коэффициентом уравнения реакции. Одной из таких редких реакций является образование ио-доводорода (2)  [c.151]


Библиография для Задачи химической кинетики: [c.271]   
Смотреть страницы где упоминается термин Задачи химической кинетики: [c.13]    [c.107]    [c.214]    [c.55]    [c.217]   
Смотреть главы в:

Кинетика топохимических реакций -> Задачи химической кинетики




ПОИСК





Смотрите так же термины и статьи:

Кинетика химическая



© 2025 chem21.info Реклама на сайте