Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионизационные потенциалы адиабатические

    В третьем случае, соответствующем кривой (Ь), определенная часть образующихся ионов стабильна, хотя и колебательно возбуждена. Поскольку область, в которой должны находиться ионы в конечном состоянии, включает сплошной спектр энергий, лежащих выше асимптоты диссоциации, определенная часть переходов приводит к диссоциации. Кривые, характеризующие равновесные межъядерные расстояния, различные для молекулы и молекулярного иона, следовательно, вероятность адиабатического перехода незначительна. Ширина области Франка — Кондона обычно меньше 0,2А и в этом случае величина вертикального перехода соответствует только верхнему пределу адиабатического потенциала ионизации. Тем не менее вероятность адиабатических переходов является достаточно определенной. Это указывает на то, что в некоторых случаях измеренное значение ионизационного потенциала может зависеть от чувствительности измерительной аппаратуры. Действительно, увеличение чувствительности эквивалентно расширению области Франка — Кондона. Форма ионизационной кривой (рассматриваемая ниже) указывает, в каком случае могут быть достигнуты условия (6). Четвертый случай (кривая с) иллюстрирует переход в высшее, отталкивательное энергетическое состояние конечное состояние всегда лежит в области сплошного спектра все такие переходы сопровождаются диссоциацией, и избыточная энергия образующихся осколков определяется высотой области перехода выше асимптоты диссоциации. [c.475]


    В методе фотоионизации вещество в парообразном состоянии облучают монохроматическим светом и измеряют силу тока, вызванного ионизацией. Соответствующий анализ функциональной зависимости силы тока от энергии квантов падающего света дает величину адиабатического ионизационного потенциала [91. Метод фотоионизации аналогичен методу электронного удара с той разницей, что для возбуждения молекул используют не электроны, а фотоны. Монохроматический свет легче получить, чем монохроматический пучок электронов вследствие этого метод ФИ по точности приближается к методу УФС. [c.10]

    Ионизационный потенциал молекулы или радикала —это минимальная энергия, необходимая для отрыва электрона. Точнее, так определяется первый ионизационный потенциал, чтобы отличать эту величину от второго, третьего и т. д. ионизационных потенциалов, соответствую-ш,их удалению электронов с более глубоко расположенных уровней (рис. 11). Однако в данной статье под ионизационным потенциалом во всех случаях, где не оговорено противное, подразумевается именно первый ионизационный потенциал. Поскольку каждой молекулярной орбитали соответствуют колебательные уровни (у = О, 1,2,. ..), то самый низкий измеряемый ионизационный потенциал в точности соответствует энергии, необходимой для отщепления электрона, находящегося на высшей занятой орбитали с V — О (если хотят получить ион с у = 0). Такой ионизационный потенциал называется адиабатическим и может быть определен методами ультрафиолетовой, фотоионизационной и фотоэлектронной спектроскопии. Адиабатические потенциалы отличаются от так называемых вертикальных потенциалов ионизации, определяемых методом электронного удара, поскольку последние могут соответствовать го- [c.30]

    И имеют форму, аналогичную кривой (с) рис. 177, особенно если учесть размазывание кривой вследствие разброса ионизирующих электронов по энергиям. Был измерен вертикальный ионизационный потенциал 9,5 эв [371], но из рассмотрения формы кривой при низких энергиях следует, что адиабатический ионизационный потеницал не может быть измерен, удается получить только верхний предел для этой величины — 8,75 эв. Предел диссоциации для образования (СНгННг) иона составляет около 9,6 эв. На рис. 182 показаны кривые первых производных для ацетальдегида, н-пропанола и окисла азота, полученные при фотонном ударе. Кривые были построены с использованием [c.483]

    По методу УФС для метильного радикала получено значение I = = 9,843 0,001 эв [38, 39], что находится в хорошем согласии с данными метода ЭУ (/ = эв), которые уже приводились в табл. 1. Метод ФИ также приводит к близким результатам 9,82 0,04 эв [40]. Очевидно, эти значения характеризуют адиабатический ионизационный потенциал. Если мы попытаемся сравнить полученные разными методами значения ионизационных потенциалов других радикалов, то, к сожалению, картина окажется далеко не такой отрадной. Во-первых, до сих пор по методу УФС не был измерен ионизационный потенциал ни для одного радикала, кроме СНз-. Во-вторых, недавняя работа Элдера и сотрудников [40] вообще заставляет усомниться, действительно ли величины, полученные методом ЭУ, являются значениями I. В связи с этим напомним, что именно данные метода ЭУ широко использовались в настоящем разделе. Рассматривая эти результаты, мы видели, что сами по себе они дают вполне стройную и логичную картину изменения / в зависимости от структуры. Тем не менее, применяя метод ФИ, указанные авторы получили намного более низкие значения /, чем по методу ЭУ для радикалов этила (<8,4 эв по сравнению с 8,78 эв), н-пропила (<8,1 эе по сравнению с 8,69 эв) и изопропила (< 7,5 эв по сравнению с 7,90эб). Кроме того, они показали, что эти величины, возможно, не являются значениями адиабатического ионизационного потенциала. Очевидно, до появления результатов новых исследований этот вопрос нельзя считать окончательно решенным, поэтому при использовании значений I, полученных по методу ЭУ, следует делать соответствующие оговорки. [c.20]


    Из нулевой эффективности ионизации для иона был определен потенциал ионизации этиленимина. Он равен 9,94 0,15 эв. Вычисленная отсюда теплота образования iiHf (СгНбМ) составляет 255 ккал/моль. Близкая величина (9,9 эв) получена недавно [23] скоростным (< 1 мин.) определением потенциалов ионизации и выхода с использованием компенсационной техники. Следует отметить также довольно значительное расхождение потенциалов ионизации этиленимина, полученных методом электронного удара, с вычисленными по орбитальному методу (9,04 эв), которое, по-видимому, является следствием известного расхождения между адиабатическими (полученными фотоионизационным методом) и масс-спектроско-лическими значениями ионизационных потенциалов аминов. [c.50]

    На этом основании потенциал появления осколочных ионов, так же как и потенциал появления молекулярных ионов, определяемых этим методом, может рассматриваться, как верхний предел адиабатической или истинной величины. Ионизационные кривые, выражающие количество образующихся ионов как функцию энергии бомбардирующих электронов, были получены для различных типов ионов [1193, 1322, 1548, 2042]. На рис. 178 и 179 представлены ионизационные кривые для ртути с анализом по массам образующихся продуктов, а также без него. Они были получены Блэкни [220]. На кривой для Hg наблюдается максимум, соответствующий примерно 50 эв, и последующее постепенное падение интенсивности ионного тока примерно на 40% от максимальной величины при 400 эв. Кривые для соответствующих многозарядных ионов характеризуются максимумами при постепенно повышающихся значениях энергии электронов. Форма кривой на рис. 179 типична для больших молекул органических соединений. В этих случаях преимущественно образуются не молекулярные, а осколочные ионы. Доля многозарядных ионов меньше, чем для одноатомных газов, что отражает возрастающую вероятность диссоциации при высоких энергиях электронов. Наибольшая эффективность ионизации обычно наблюдается в области 50—100 эв [1987] на этом основании энергии такого порядка используются при химическом анализе. [c.475]

    Аналогичные соображения применимы к третьей производной ионизационной кривой двузарядных ионов при электронном ударе. В этом случае первые производные имеют ту же самую форму, что и ионизационная кривая для однократной ионизации. Моррисон указал, что многие трудности в интерпретации кривых эффективности ионизации являются следствием использования в качестве ионизирующих частиц электронов. Если вместо них использовать фотоны, то многие инструментальные трудности, связанные с зарядом, который несет электрон и которые приводят к изменению его кинетической энергии в рассеянных полях, могут быть преодолены устраняются также трудности, связанные с контактной разностью потенциалов, поэтому энергия луча точно известна. Значительно облегчается также получение луча, однородного по энергиям. Существенно то, что пороговый закон при ионизации фотонами, установленный Гельтманом [727], имеет очень удобную форму для экспериментального исследования. Вероятность ионизации изменяется скачкообразно при критической энергии от О до величины, которая сохраняется для пучков с большей энергией. Первая производная ионизационной кривой дает пики, при помощи которых может быть установлена вероятность электронных переходов. Простой пример кривой вероятности переходов иллюстрируется гипотетической двухатомной молекулой (рис. 177). Если равновесное межъядерное расстояние в ионизированной молекуле близко к основному состоянию, то относительная вероятность электронного перехода, такая, как в точке а, будет весьма высока и связана с наинизшей энергией процесса измеряемый потенциал ионизации будет адиабатическим. Если межъядерное равновесное расстояние в ионе и в молекуле различается (случай Ь), то вероятность будет увеличиваться с увеличением энергии от О до максимального значения. При этих условиях нельзя измерить адиабатический потенциал ионизации. В случае Ь вероятность образования молекулярного иона возрастает от О до максимума вследствие переходов выше предела диссоциации осколочный ион к будет появляться с вероятностью, соответствуюш,ей переходу в область сплошного спектра. Третий тип вероятных переходов показан в точке С и соответствует пересечению области Франка — Кондона с верхним состоянием потенциальной кривой выше предела диссоциации. В этом случае вероятность увеличивается от О до максимума и затем падает снова до 0. При этом не может быть переходов, приводящих к образованию молекулярных ионов. [c.482]

    Факт образования при ионизации иона определенной массы сам по себе еще ничего не говорит о структуре образующегося катиона. Часто предполагают протекание перегруппировок катиона в масс-спектрометре, но может потребоваться подробное исследование с использованием меченых молекул для того, чтобы установить путь образования и структуру перегруппированного иона [602, 916]. Величина потенциала ионизации сама по себе характеризует только энергию, требуемую для образования ионов некоторой определенной массы. Если наиболее стабильный из различных возможных изомерных ионов ближе всего структурно связан с исходной молекулой, то, возможно, он и будет единственной образующейся при этом частицей. Однако если наиболее стабильный изомер может быть образован лишь в результате скелетной перегруппировки, то в этом случае природа образующегося иона будет зависеть от энергии активации, требуемой для перегруппировки. Из этих соображений следует, что интерпретация ионизационных потенциалов даже для систем, кажущихся простыми, может быть не столь однозначной, как это может показаться при поверхностном рассмотрении. Они также объясняют, почему столь большое внимание в масс-спек-трометрии уделяется различию между вертикальным и адиабатическим ионизационным потенциалом, а также влиянию энергии электронного пучка. Можно ожидать, что расширяющиеся [c.80]


    Франка—Кондона). Если выброшенный электрон находится на связывающей орбитали, то начальная конфигурация полученного иона отличается от конфигурации его основного состояния, поскольку одно или несколько межатомных расстояний в этом ионе оказываются меньше, чем в равновесной конфигурации. Колебательное возбуждение индуцируется и в том случае, когда электрон находился на разрыхляющей орбитали, поскольку при удалении электрона с такой орбитали некоторые ядра оказываются дальше друг от друга, чем в равновесной конфигурации иона. Рассмотрение кривой эффективности ионизации позволяет установить, с какой орбитали (связывающей, несвязывающей или разрыхляющей) был удален электрон. Только во втором случае ионизационный порог соответствует адиабатическому потенциалу ионизации. В противном случае адиабатический потенциал меньше, чем наблюдаемое пороговое значение энергии. Переходы на более высокие колебательные уровни иона увеличивают наклон кривой (см. схему на рис. 1). Если электрон уходит со связывающей или разрыхляющей орбитали, то нарастание ионного тока происходит медленно, и в некоторых случаях удается оценить колебательные переходы по изменениям наклона кривой эффективности ионизации. Тогда адиабатические потенциалы ионизации можно определить, пользуясь принципом Франка—Кондона. [c.48]


Смотреть страницы где упоминается термин Ионизационные потенциалы адиабатические: [c.94]   
Карбониевые ионы (1970) -- [ c.79 ]

Ионы и ионные пары в органических реакциях (1975) -- [ c.48 ]




ПОИСК





Смотрите так же термины и статьи:

Ионизационный потенциал



© 2025 chem21.info Реклама на сайте