Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионизационные потенциалы методом электронного удара

    Ионизационный потенциал трифторметильного радикала, определенный непосредственно методом электронного удара, значительно выше (10,1 эб) , и Котрелл ° полагает, что, комбинируя это значение со значением потенциала появления иона трифторметильного радикала СРз из двух фторированных этапов, он точнее оценивает энергию разрыва связи С--С 97 ккал/моль для гексафторэтана и 90 ккал/моль для 1,1,1-трифторэтана. Для объяснения таких высоких результатов Котрелл принял, что при расщеплении обоих этапов образуются осколки, обладающие избыточной кинетической энергией (около 1 эв). Однако Прайс считает, что значение потенциала ионизации трифторметильного радикала, найденное методом электронного удара, в действительности само но себе выше примерно на 0,5 эв, так что в процессе диссоциации осколки приобретают еще большую кинетическую энергию. Если же рассчитать энергию разрыва связи в гексафторэтане, исходя из теплоты образования трифторметильного радикала и собственно этана, получают значение 69 ккал/моль °, что подтверждается некоторыми кинетическими соображениями. [c.283]


    В недавних работах, посвященных потенциалу ионизации бензола , было показано, что обычный метод электронного удара приводит к величине, на 0,2—0,4 эв превышающей спектроскопическую величину Прайса . Пределы значений составляют 9,1—9,9 лри этом установлено, что, только применяя специальные методы, например метод моноэнергетического электронного пучка, или пользуясь двойным дифференцированием кривой эффективности ионизации , можно добиться удовлетворительного согласия со спектроскопическими данными. Далее, двойное дифференцирование и другие методы позволили обнаружить существование энергетических уровней иона СбНе, лежащих в непосредственной близости от потенциала ионизации высказано предположение, что в этом и заключается причина получения повышенных значений при помощи обычного метода электронного удара. Простирание указанных уровней слишком широкое, чтобы их можно было принять за колебательные уровни, и в настоящее время для их истолкования нет удовлетворительных объяснений. Однако в ионе СеРе подобные Уровни должны отсутствовать, так как, пользуясь методом, который для ионизационного потенциала бензола дал значение 9,6 эв, для потенциала ионизации гексафторбензола получают величину 10 эв последняя хорошо согласуется со значением, найденным спектроскопическим методом. [c.313]

    Одна из фундаментальных характеристик свободного радикала — его ионизационный потенциал — может быть с достаточной точностью найдена методом электронного удара. Знание величин потенциалов ионизации свободных радикалов представляет ценность по трем причинам. Во-первых, по величинам потенциала ионизации радикала и потенциала появления ионизированного радикала, образующегося нри диссоциативной ионизации соединения, содержащего этот радикал, можно вычислить энергию диссоциации соответствующей связи, согласно соотношению [3  [c.424]

    В методе фотоионизации вещество в парообразном состоянии облучают монохроматическим светом и измеряют силу тока, вызванного ионизацией. Соответствующий анализ функциональной зависимости силы тока от энергии квантов падающего света дает величину адиабатического ионизационного потенциала [91. Метод фотоионизации аналогичен методу электронного удара с той разницей, что для возбуждения молекул используют не электроны, а фотоны. Монохроматический свет легче получить, чем монохроматический пучок электронов вследствие этого метод ФИ по точности приближается к методу УФС. [c.10]

    Ионизационный потенциал молекулы или радикала —это минимальная энергия, необходимая для отрыва электрона. Точнее, так определяется первый ионизационный потенциал, чтобы отличать эту величину от второго, третьего и т. д. ионизационных потенциалов, соответствую-ш,их удалению электронов с более глубоко расположенных уровней (рис. 11). Однако в данной статье под ионизационным потенциалом во всех случаях, где не оговорено противное, подразумевается именно первый ионизационный потенциал. Поскольку каждой молекулярной орбитали соответствуют колебательные уровни (у = О, 1,2,. ..), то самый низкий измеряемый ионизационный потенциал в точности соответствует энергии, необходимой для отщепления электрона, находящегося на высшей занятой орбитали с V — О (если хотят получить ион с у = 0). Такой ионизационный потенциал называется адиабатическим и может быть определен методами ультрафиолетовой, фотоионизационной и фотоэлектронной спектроскопии. Адиабатические потенциалы отличаются от так называемых вертикальных потенциалов ионизации, определяемых методом электронного удара, поскольку последние могут соответствовать го- [c.30]


    Несмотря на эти трудности, методы электронного удара дают значения ионизационного потенциала, находящиеся в разумном согласии со спектроскопическими данными (хотя и несколько превышают последние). Они, однако, не дают наинизшего значения энергии, необходимого для отрыва электрона. [c.33]

    Имеются еще и другие методы измерения ионизационных потенциалов, к которым подобные возражения не применимы, во всяком случае в такой степени. Из этих методов лучше всего разработан метод спектроскопического определения предела слияния линий для электронных переходов в серии Ридберга, но он применялся лишь к относительно простым частицам типа метильных радикалов. В другом методе (фотоионизации) отрыв электрона от радикала осуществляется за счет удара быстрым фотоном. Поскольку относительно легко получить пучок монохроматического света, то энергию фотона, необходимую для появления ионов определить гораздо легче, чем энергию электрона в обычном методе электронного удара. Усовершенствованный вариант метода электронного удара, известный под названием метода задерживающего потенциала (ЗП), в значительной мере устраняет его недостатки, и получаемые при этом величины лучше соответствуют данным, полученным по методу фотоионизации и спектроскопии. Однако до тех пор, пока не будет получено больше данных по ионизации радикалов под действием фотонов или по методу ЗП, единственным способом проследить влияние структурных факторов на ионизационные потенциалы радикалов является рассмотрение обширных данных, полученных обычным методом электронного удара. [c.78]

    Количество энергии, необходимое для превращения нейтральной молекулы в положительный ион, называется ионизационным потенциалом молекулы. Ионизационный потенциал — важная физическая константа, характеризующая электронную структуру молекулы. Ионизационные потенциалы определяют в основном двумя методами методом фотоионизации и методом электронного удара. [c.237]

    Образовавшиеся ионы ускоряются при прохождении через отрицательно заряженные щелевые диафрагмы 6 по направлению к масс-анализатору. Неионизированные молекулы, как и незаряженные осколки, при помощи диффузионного насоса 8 выводятся из масс-спектрометра. Наряду с ионизацией электронным ударом иногда используют также другие методы получения ионов. При осуществлении фотоионизации необходимая энергия поставляется ультрафиолетовым излучением. Для этого требуется излучение с длиной волны 150—80 нм (вакуумная ультрафиолетовая область), соответствующее ионизационному потенциалу 8—15 эВ. При ионизации полем используют сильное электрическое поле, способное оторвать электроны от молекул вещества пробы. В обоих методах ионизации происходит мягкая ионизация, так как подводимая энергия лишь немного превышает потенциал ионизации и, таким образом, едва разрывает связи в молекулярном ионе . Поэтому спектры, получаемые при фотоионизации и ионизации по- [c.286]

    Наиболее строгим методом оценки энергии ВЗМО является определение первого ионизационного потенциала (ПИ1). Экспериментально потенциалы ионизации измеряют для разреженной газовой фазы методами фотоэлектронной спектроскопии (ФЭС) или электронного удара (ЭУ) первый метод дает несколько более точные значения. Расчетные величины ПИь полученные с помощью квантово-механических методов, могут заметно отличаться от экспериментальных, но, как правило, они верно отражают тенденцию изменения величин ПИ различных соединений и приводят к тем же основным выводам. Неоднократно отмечалась хорошая корреляция между экспериментальными и вычисленными значениями ПИ1 гетероциклических соединений, включая расчетные данные, полученные с помощью простого метода МОХ [81]. [c.78]

    При применении косвенного метода нет необходимости проводить трудные измерения ионизационного потенциала радикала теплота образования радикала также определяется более просто. Под ударом бомбардирующих электронов пропан может диссоциировать на этил-ионы и метил-радикалы. Этан может диссоциировать с образованием этил-ионов и атомов водорода, и, следовательно, разность между энергиями этих двух процессов соответствует энергии реакции между пропаном и атомом водорода, дающей этан и метил-радикал. [c.163]

    Из нулевой эффективности ионизации для иона был определен потенциал ионизации этиленимина. Он равен 9,94 0,15 эв. Вычисленная отсюда теплота образования iiHf (СгНбМ) составляет 255 ккал/моль. Близкая величина (9,9 эв) получена недавно [23] скоростным (< 1 мин.) определением потенциалов ионизации и выхода с использованием компенсационной техники. Следует отметить также довольно значительное расхождение потенциалов ионизации этиленимина, полученных методом электронного удара, с вычисленными по орбитальному методу (9,04 эв), которое, по-видимому, является следствием известного расхождения между адиабатическими (полученными фотоионизационным методом) и масс-спектроско-лическими значениями ионизационных потенциалов аминов. [c.50]


    Масс-спектрометрический метод (или метод электронного удара) определения ионизационного потенциала молекулы не может быть применен к перфторпарафинам вследствие неустойчивости молекулярных ионов. Метод электронного удара зависит от точного нахождения точки, в которой энергия ионизирующего электронного луча как раз достаточна для отрыва электрона от молекулы. Этого добиваются, понижая ионизирующее напряжение до тех пор, пока ионный ток не сделается пренебрежимо малым. Шкалу напряжений прибора всегда калибруют при помощи газа, потенциал ионизации которого заранее точно определен спектроскопическим методом. Чаще всего для этой цели пользуются криптоном и аргоном. Оценку потенциала ионизанли производят, измеряя интервал напряжений между исчезновением ионного тока, вызванного ионизирующим газом, и исчезновением тока, обусловленного исследуемыми молекулами. [c.279]

    К)—ионизационный потенциал радикала К. Необходимо отметить, что энергия диссоциации О (СРз—Н) углеводородной связи во фтороформе, определенная посредством метода электронного удара, хорошо согласуется со значением, полученным из энергий активации прямой и обратной реакций между трифторметильным радикалом и метаном. Еще лишь в одном случае (для трихлорбромметана) наблюдалось [c.360]

    Рид и Снедден на основании данных метода электронного удара определили теплоту образования дифторметиленового радикала (—5 10 ккал/моль), что вместе с теплотой образования тетрафторэтилена дает для искомой энергии диссоциации значение 142 20 ккал/моль. Позднее Маргрейв измерил потенциал появления дифторметиленового радикал-иона из тетрафторэтилена, который оказался равным 15,2 эв. Предполагая ионизационный потенциал дифторметиленового радикала равным 11 1 эв, подобно ионизационному потенциалу метиленового радикала (11,90 0,1 эе), Маргрейв показал, что энергия диссоциации связи в этом случае составляет приблизительно 118 ккал. Однако такое предполагаемое значение ионизационного потенциала гораздо меньше, чем найденное Ридом и Снедденом (13,3 эе) [c.365]

    Ионизационный потенциал трифторметильного радикала, определенный непосредственно методом электронного удара, значительно выше (10,1 и Котрелл ° по агает, что, [c.283]

    Расхождение значений энергии диссоциации бром-углеродной связи в бромтрифторметане, определенных методом электронного удара и методом Шварца, велико. Величина энергии диссоциации иод-углеродной связи в иодтрифторметане, даваемая методом электронного удара, оказывается неприемлемо низкой. Энергии диссоциации с участием трифторметильного радикала рассчитаны из данных метода электронного удара с учетом потенциала ионизации трифторметильного радикала (10,1 эв), найденного двумя прямыми определениями ° Высказано мнение, что это значение ионизационного потенциала слишком велико, поэтому было предложено более низкое значение (9,3 эв), дающее лучшее совпадение значений энергии диссоциации связей в хлортрифторметане и бромтрифторметане, определенных методом электронного удара и другими методами. Еще более низкий ионизационный потенциал"2, полученный на основании потенциалов появления ионов метильного и трифторметильного радикалов из 1,1,1-трифторэтана, следует отбросить, учитывая высокие энергии возбуждения, входящие в эти величины (см. ниже). [c.361]

    Энергии диссоциации связей С—Н были получены в результате измерений методом электронного удара как непосредственно, так и косвенным путем. Энергия диссоциации Д(СНз—Н) в метане была определена [191] путем измерения потенциала появления ионаСНз , когда метан подавали в ионизационную камеру. Эта энергия диссоциации принимается равной энергии процесса [c.163]

    В последние годы все более широкое распространение приобретает масс-спектрометрте-ский метод определения термохимических величин. Описание этого метода можно найти, например, в монографиях Бернарда [90] и Коттрелла [255]. В результате масс-спектромет-рических исследований измеряются потенциалы появления и ионизации, а также интенсивности токов образующихся ионов. Если в результате электронного удара происходит разрыв связи в молекуле, то найденные экспериментально потенциалы появления и ионизации позволяют вычислить энергию диссоциации этой связи. При этом необходимо знать энергию электронного возбуждения и кинетическую энергию осколков молекулы. Во многих случаях, однако, отнесение измеренного потенциала появления иона к конкретному процессу вызывает затруднения. Для вычисления энергии диссоциации связи необходимо также знать температуру, при которой происходит диссоциативная ионизация. Как показали Тальрозе и Франкевич [407], в ионизационной камере масс-спектрометра с источником типа Нира между стенками камеры и газом достигается температурное равновесие. Учитывая это обстоятельство, при пересчете результатов масс-спектрометрических работ, в которых температура молекулярного пучка специально не оговорена, в Справочнике принималось, что процессы диссоциативной ионизации протекали при температуре ионного источника. Температура стенок ионного источника приближенно принималась равной 500° К- [c.157]

    Ионизационные кривые снимались в интервале разности потенциалов анод — катод от 7 до 35 е через 0,15 в. Потенциалы появления ионов определяли методом экстраполированных разностей [2] сравнение проводили между кривой эффективного выхода исследуемого иона и кривой эффективного выхода молекулярного иона бензола потенциал появления молекулярного иона бензола был принят равным 9,21 0,01 эв [3]. Бензол вводили в источник одновременно с исследуемым веществом. При определении потенциала появления иона СдН из тиофена в качестве репера применяли аргон (ионизационный потенциал 15,76 эв [4]), а бензол в прибор не вводили, так как при электронном ударе он также может дать ион С3Н3 .  [c.240]


Смотреть страницы где упоминается термин Ионизационные потенциалы методом электронного удара: [c.201]    [c.396]    [c.361]    [c.363]    [c.363]    [c.41]    [c.78]    [c.165]    [c.289]    [c.289]   
Ионы и ионные пары в органических реакциях (1975) -- [ c.47 ]




ПОИСК





Смотрите так же термины и статьи:

Ионизационный потенциал

Метод ионизационный

Метод потенциале

Метод электронного удара

Потенциал электронный

Электронных пар метод



© 2025 chem21.info Реклама на сайте