Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал ионизации определение

    Электроотрицательность. Электроотрицательностью называют величину, количественно характеризующую способность атома в молекуле присоединять или отдавать электроны при образовании химической связи. Так, например, в молекуле НР атом фтора является более электроотрицательным, чем атом водорода, так как атом фтора смешает к себе связующую электронную пару, т, е. центр тяжести облака двух связующих электронов. Согласно Малликену, мерой электроотрицательности может быть полусумма потенциала ионизации и электронного сродства. В настоящее время предложены и другие методы определения электроотрицательности. [c.92]


Таблица 4.3. Результаты определения потенциала ионизации и сродства к Таблица 4.3. Результаты определения потенциала ионизации и сродства к
    Вместе с тем, на потенциал ионизации этиленовых углеводородов влияют не только величина, но и положение радикала относительно двойной связи [300]. При увеличении числа метильных групп в молекуле в ряду этилен, пропилен гр<знс-бутен-2, З-метилбутен-2 и 2,3-диметилбутен-2 наблюдается правильное падение потенциала ионизации. Симметричные структуры обладают более низким потенциалом ионизации так изобутилен, цис-бутен-2, транс-бутен-2 ионизуются, соответствеино, при 9,35 9,31 и 9,29 в. Введение в молекулу этилена этильных и пропильных радикалов вызывает более значительное снижение потенциалов ионизации по сравнению с метильным, но фактор симметрии в этом случае играет определенную роль гранс-гексен-З (9,12 в), как более симметричный, чем 2-этилбутен-1 (9,23 в) имеет более низкий потенциал ионизации. [c.181]

    Таким образом, на один первично образованный ион Н2О+приходится пять разлагающихся молекул воды. Закон сохранения энергии при этом не нарушается, так как потенциал ионизации молекулы Н2О составляет 13 в, а для разложения пяти молекул Н2О необходима энергия, равная приблизительно 5X2,5 = = 12,5 эв. По теории горячих точек , разработанной Ливингстоном (1936), энергия, выделяющаяся при нейтрализации центрального иона, нагревает комплекс до высокой температуры, т. е. непосредственно после нейтрализации комплекс обладает энергией, которую он имел бы, если бы существовал в виде достаточно большой массы газа при некоторой эквивалентной температуре. Конечно, малого числа молекул, составляющих комплекс, недостаточно для определения температуры в обыч- [c.252]

    Как и потенциал ионизации, сродство атома к электрону определяется его электронной конфигурацией. Галогены имеют самое высокое сродство к электрону, так как при присоединении одного электрона к их атому он приобретает законченную электронную конфигурацию инертного газа. Следует отметить, что прямое определение сродства к электрону из-за больших экспериментальных трудностей сделано лишь для небольшого числа элементов, например галогенов. Большинство значений получено путем соответствующих расчетов. Значения сродства к электрону (эВ) для некоторых атомов приведены ниже  [c.55]


    Неэмпирический расчет молекулы сероводорода был проведен только в одноцентровом приближении [4]. Одноцентровые орбиты представлены в виде линейной комбинации атомных орбит, отнесенных к атому серы. При этом предполагается, что электроны атомов водорода также оккупируют одноцентровые орбиты. Одноцентровое приближение значительно упрощает расчет, однако только в некоторых случаях оно дает вполне удовлетворительные результаты. Результаты расчета иллюстрируются следующими цифрами длина связи S—Н 2,509 (2,525 ), валентный угол 89°24 (92°13), дипольный момент 0,6789 (0,362), потенциал ионизации 0,3506 (0,384), полная энергия 397,5891 (—400, 81) 14]. Все величины даны в атомных единицах. Потенциал ионизации определен не как разность энергий нейтральной и ионизированной молекулы [14], а как энергия одной из внешних орбит. Данные по энергии диссоциации не приводятся, но можно ожидать, что они дали бы значительное расхождение с опытом. [c.238]

    Ноя Спектроскопич. потенциал ионизации по данным работы [15] Потенциал ионизации, определенный в настоящей работе Число измерений Потенциал ионизации по данным работы [14] [c.398]

    Однако при вертикальном переходе ион Н оказывается не на нулевом колебательном уровне (ввиду того, что равновесное межъядерное расстояние для состояния 2+ иона больше, чем для состояния >2+ молекулы Нг). Энергия электронов, прп которой образуются ионы Н , оказывается поэтому большей, чем потенциал ионизации, определенный спектроскопически (адиабатический потенциал ионизации), равный 15,427 эв. [c.28]

    Потенциал ионизации определен методом поверхностной ионизации [148]. [c.197]

    Потенциал ионизации определен путем экстраполяции потенциалов ионизации молекул конденсированных ароматических соединений. [c.197]

    Потенциал ионизации определен путем экстраполяции потенциалов ионизации молекул галогенов. [c.197]

    Исследование потенциалов ионизации ацетиленовых углеводородов [302] позволило установить ряд закономерностей, хорошо согласующихся с квантово-механическими представлениями о характере тройной связи. Согласно этим представлениям тройная связь образуется за счет одной пары ст-электронов и двух пар л-электронов, что обеспечивает ее большую прочность по сравнению с двойной связью. Действительно, потенциал ионизации ацетилена равен 11,46 в, т. е. на 0,84 в выше ионизационного потенциала этилена. При введении алкильных заместителей в молекулу ацетилена наблюдаются зависимости в определенной степени аналогичные тем, которые наблюдались в ряду метановых и -этиленовых углеводородов. Замещение водорода метильным радикалом приводит к заметному снижению ионизационного потенциала. Дальнейшее увеличение алкильного радикала дает значительно меньший эффект. [c.182]

    При определении потенциалов ионизации и появления на масс-спектрометре регистрируют изменение ионного тока в зависимости от энергии ионизирующих электронов. При этом получается так называемая кривая эффективности ионизации, по которой тем или иным методом определяют потенциал ионизации. Наиболее часто встречающийся тип кривой состоит из четырех основных частей  [c.175]

    Начальное значение этого потенциала отвечает определенной скорости анодного процесса ионизации водорода, растворенного в никеле. С течением времени скорость анодной реакции должна постепенно уменьшаться за счет понижения концентрации растворенного водорода в поверхностном слое металла. В результате потенциал электрода будет постепенно смещаться в электроположительную сторону, что видно из данных рис. 133. При этом сдвиге потенциала на поверхности никелевого электрода возникает новая анодная реакция N -26-)-->N 2+, которая в сочетании с катодной реакцией восстановления кисло рода дает суммарную реакцию [c.297]

    Согласно большинству физических и химических методов, четыре связи в молекуле метана эквивалентны (например, ни ЯМР-, ни ИК-спектр метана не содержит пиков, которые можно было бы отнести к разного вида связям С—Н), однако имеется такой физический метод, который позволяет дифференцировать восемь валентных электронов в молекуле метана. Это метод фотоэлектронной спектроскопии [10]. Суть его состоит в том, что молекулу или свободный атом облучают в вакууме ультрафиолетовым светом, вызывая выброс электрона, энергию которого измеряют. Разность между этой энергией и энергией использованного излучения есть потенциал ионизации вырванного из молекулы электрона. Молекула, содержащая несколько электронов различной энергии, может терять любой электрон, энергия которого ниже, чем энергия использованного излучения (каждая молекула теряет только один электрон, потеря двух электронов одной молекулой практически никогда не имеет места). Фотоэлектронный спектр состоит из серий полос, каждая из которых соответствует орбитали определенной энергии. Таким образом, спектр дает прямую экспериментальную картину всех орбиталей в зависимости от их энергии, при условии что энергия используемого излучения достаточно высока [11]. Широкие полосы в спектре обычно соответствуют сильно связанным электронам, а узкие полосы — слабо связанным или несвязанным электронам. Типичным примером является спектр молекулярного азота, показанный на рис. 1.8 [12]. Электронная структура молекулы N2 показана на рис. 1.9. Две -орбитали атомов азота комбинируются, давая две орбитали — связываю- [c.24]


    Для нахождения потенциалов ионизации и сродства к электрону необходимо определить энергии положительного и отрицательного ионов. Для определения энергий синглетных и триплетных переходов необходимо рассчитать энергии синглетных и триплетных возбужденных состояний. Для этого составляются соответствующие детерминантные функции (или их линейные комбинации), и энергии состояний вычисляются по правилам расчета матричных элементов от детерминантных функций (3.30) —(3.33). Так, можно показать, что потенциал ионизации молекулы (в приближении замороженных орбиталей) равен 1 = Е+—Е ——е , где г — одноэлектронная энергия высшей заполненной молекулярной орбитали, полученная из уравнения Хартри—Фока. [c.67]

    В метане. Потенциал ионизации — это энергия, требуемая для удаления электрона нз молекулы. Он довольно высок для большинства органиче-ских молекул н составляет величину порядка 200 ккал/моль [27]. Для определения потенциалов ионизации [c.30]

    Каждая линия в зависимости от ее потенциала возбуждения и потенциала ионизации вещества имеет максимум при определенной тем- [c.51]

    Далее в методе МОХ предполагается, что можно пренебречь всеми взаимодействиями между несмежными атомами члены и отвечающие этим взаимодействиям, принимаются равными нулю. Величину аг считают равной потенциалу ионизации атомных орбиталей изолированного атома. Все члены вида и для взаимодействующих атомов считаются одинаковыми (что вполне верно лишь для симметричных молекул определенного типа). Интегралы перекрывания 5гг=1, а интегралы принимаются равными нулю, если г=ф5. Это значит, что перекрыванием орбиталей пренебрегают. Такое допущение справедливо, когда атомы г и з находятся далеко друг от друга, но, вообще говоря, оно довольно грубо. В итоге всех этих упрощений из детерминанта получают характеристическое уравнение, имеющее п корней, и каждый корень имеет вид = а-Ьт,р. Наименьшее значение корня отвечает основному состоянию остальные приблизительно представляют возбужденные состояния. Положительные значения т/ характерны для связывающих орбиталей, отрицательные — для разрыхляющих. Низшему энергетическому уровню соответствуют наибольшие положительные значения т,- (аир отрицательны). Значение кулоновского интеграла а принимается за начало отсчета. Первый потенциал ионизации пи-электронов приближенно характеризует энергию высшей заполненной молекулярной орбитали. [c.116]

    Доломатов М.Ю., Мукаева Г.Р. Способ определения потенциала ионизации и сродства к электрону атомов и молекул методом электронной спектроскопии. // Журнал прикладной спектроскопии.-1992.- Т56.- №4. - С. 570-574. [c.272]

    Из табл. 9 видно, что валентные электроны у алюминия связаны менее прочно, чем у галлия, индия и таллия таллий менее электроположителен, чем алюминий потенциал ионизации атома таллия выше, чем атома алюминия. Бор обнаруживает определенное сходство с кремнием. [c.156]

    Отрыву каждого электрона в атоме соответствует определенный потенциал ионизации. 1 соответствует отрыву первого электрона от нейтрального атома  [c.62]

    В 1934 г. Малликен предложил другой метод определения ЭО, суммируя первый потенциал ионизации и сродство к электрону. По Малликену, ЭО имеет размерность энергии. При введении постоянного коэффициента ЭО, вычис.пенные Малликеном, почти совпали с ЭО, рассчитанными по Полингу. [c.60]

    В периодической системе (см. табл. на форзаце). Потенциал ионизации выражается в электрон-вольтах, ионные радиусы — в ангстремах. Сопоставление этих величин, например, для щелочных металлов, галогенов, водорода показывает, что действительно водород не относится ни к первой группе, ни к седьмой, а занимает особое положение в периодической системе. В таблице 6 приведены значения lg(/p r ) для различных аналитических групп. Каждая группа характеризуется определенным значением этой величины. Например, для катионов щелочных металлов lg t, = l,35—1,40, для анионов галогенов lg/e = l,38—1,41. Таким образом, как потеря, так и приобретение одного электрона соответствует одному и тому же значению кх. Для ионов Р , С1 , Вг , 1 вместо потенциала ионизации взято электронное сродство. У иона же Н 12Й,=0 или близок к нему. (Ионный радиус Н 1,36 А взят по Бокию и Белову.) [c.24]

    Анализ колебательной и вращательной структуры наблюдаемой системы полос данного свободного радикала позволяет установить различные электронные состояния радикала. В случаях, когда в спектре обнаруживаются серии Ридберга, может быть определен потенциал ионизации. Это сделано, например, для радикала СН, для которого в табл. 2 приведены ридберговские состояния, предсказанные на основе теории молекулярных орбиталей. На диаграмме уровней энергии на рис. 50 изображены наблюдаемые электронные [c.81]

    Нами изучалась возможность определения азота по молекулярным полосам циана, образующегося в результате реакции азота и углерода при температуре дуги. Молекулярный спектр циана имеет достаточное число полос, низкий потенциал ионизации — 3,2 ЭВ в ультрафиолетовой и видимой области спектра, что позволяет получить высокую чувствительность, применять более распространенные типы фотопластинок и расширить диапазон определяемых концентраций, за счет использования различных циановых полос. Подобраны условия создания контролируемой атмосферы вокруг разряда, способы очистки графитовых электродов от азота, изучен характер выгорания азота из различных коксов. [c.134]

    Следует ожидать, что следующий потенциал ионизации соответствует отрыву электрона (а З ). Этот электрон отрывается с орбиты, имеющей, вероятно, отталкивательиый характер энергия, необходимая для отрыва электрона, находящегося на этой орбите, должна быть менее 24,46 эв — энергии связи Зх электрона в атоме С1. Правильнее приписать потенциал ионизации, определенный методом электронного удара (20,51 эв), процессу образования иона С1+ конфигурации [c.415]

    Выборы формы предоставления информации о структуре химического вещества во многом определяет ее соответствие структуре. Форма представления — это совокупность соглашений относительно того, как оценивать исследуел1ые объекты. Совокупность соглашений зависит от типа каталитического процесса и может основываться на использовании физико-химических, математических, структурных характеристик вещества. При этом для представления структуры могут быть использованы как ее локальные характеристики (наличие определенного типа индексных групп, определенные значения констант заместителей), так и интегральные (теоретико-информационные инварианты, потенциал ионизации и т. п.). [c.93]

    Сераорганические соединения входят в состав большинства нефтей. По содержанию и составу сернистые соединения нефти сильно различаются. В нефтях, кроме элементной серы и сероводорода, присутствуют и органические соединения двухвалентной серы меркаптаны, сульфиды, тиофены, соединения типа бензо- и дибензотиофенов. Поэтому проблема технологии нефтехимической переработки серосодержащих нефтяных фракций требует разработки качественно новых экспрессных методов оценки физико-химических свойств фракций и входящих в них компонентов. В частности, таких важнейших характеристик реакционной способности, как потенциал ионизации (ПИ) и сродство к электрону (СЭ), которые определ пот специфику взаимодействия веществ с растворителями, термостойкость и другие свойства [1]. Чтобы перейти к изучению фракций серосодержащих нефтей целесообразно изучить зависимости изменений физико-химических свойств в гомологических рядах индивидуальных соединений, содержащих серу Определенные перспективы в этом направлении открывает электронная абсорбционная спектроскопия. Целью настоящей работы является установление существования подобных зависимостей между ПИ и СЭ в рядах органических соединений серы и логарифмической функцией интегральной силы осциллятора (ИСО). Основой данной работы явились закономерности [2-4], что ПИ и СЭ для я-электронных органических веществ определяются логарифмической функцией интегральной силы осциллятора по абсорбционным электронным спектрам растворов в видимой и УФ области. Аналогичные результаты получены для инертных газов. Обнаружена корреляция логарифмической функции ИСО в вакуумных ультрафиолетовых спектрах, ПИ и СЭ [3]. [c.124]

    Хроматографическая колонка представляет собой металлическую или стеклянную трубку, заполненную насадкой (адсорбентом). Д,етек-тор предназначен для определения содержания компонентов в потоке газа-носителя. Работа детекторов основана на измерении одного из физических параметров компонента (теплопроводность, потенциал ионизации, плотность и др.). [c.46]

    Схема спектрографической установки показана на рис. 56, б. Регистрирующим прибором служит спектрограф J2, а в качестве спектроскопического источника света используется спектроскопическая импульсная лампа /, свет от которой, пройдя реакционный сосуд и спектрограф, попадает на фотопластинку 13. Спектроскопическая лампа зажигается через определенный промежуток времени после вспышки фотолитической лампы при помощи блока временной задержки 14. Таким образом по.лучается полный спектр поглощения фотолизуемого раствора. Меняя время задержки, можно получить набор спектров, изменяющихся во времени. В качестве импульсных фотолитических ламп обычно используются трубчатые импульсные ксеноновые лампы. Такие лампы имеют электрическую мощность до нескольких килоджоулей. Световая отдача таких ламп составляет 5- 20% от электрической мощности. Время вспышки ламп колеблется от 10 до 10 с (по уровню 1/е). Иногда для увеличения излучения в УФ-области к ксенону добавляют другие газы, например Нг, или ртуть. Используют им-пульсные лампы и с другим наполнением (Ог, N2, Аг). Ксенон обладает рядом преимуществ перед другими газами он имеет хорошие спектральные характеристики (сплошной спектр излучения), химическую инертность (нет взаимодействия с электродами), низкий потенциал ионизации. С увеличением энергии разряда максимум излучения смещается в ультрафиолетовую область. Разрешающее время импульсной установки определяется временем затухания светового импульса фотолитической вспышки. А время вспышки импульсной лампы в свою очередь зависит от нескольких факторов от типа лампы, электрической энергии и от емкости и индуктивности контура питания. Электрический контур составляют конденсатор, импульсная лампа и соединительные провода. Электрический разряд в контуре носит колебательный или затухающий характер в зависимости от соотнонюния между сопротивлением R, индуктивностью L и емкостью С элементов контура. Наиболее выгодным с точки зрения длительности импульса является соотпошепие Lj . Уменьшение времени затухания т достигается снижением индуктивности соединительных проводов, а также снижением емкости и индуктивности конденсатора (r yZ, ). При этом уменьшение энергии вспышки E = Wj2 компенсируется за счет увеличения напряжения на конденсаторе U. Увеличение [c.157]

    По современным воззрениям, электронная струюура кристаллического атомного вещества представляет собой квантовую систему периодической структуры, электроны которой неразличимы и каждый из них взаимодействует сразу со всей системой в целом. Трехмерная непрерывная сеть межатомных связей в твердом теле периодического строения является системой волноводов для волн электронного газа, состоящего из валентных электронов, уровни энергии которых тесно сгруппированы в квазинепрерывные зоны. Наличие свободных, не связанных с определенными атомами, электронов, способных перемещаться по всему объему тела, определяет металлическое состояние этих веществ. Наиболее характерными представите- ями этого типа твердых веществ являются металлы. Обобществленные электроны, обеспечивающие металлическую связь в кристаллических твердых веществах, в отличие от электронов обычной ковалентной связи, существенно слабее связаны с определенным атомом. Поэтому работа выхода электрона, характеризующая прочность связи электронов со всей системой, для кристаллических атомных веществ имеет обычно малые значения. Так, для металлов значение ее лежит в пределах от 1,9 э6 для цезия, до 5,3 эб-для платины, тогда как потенциал ионизации для соединений с обычной кова- [c.109]

    Определенные выводы о реакционной способности органических соединений можно сделать на основанин сопоставления величин иоргизадионных потенциалов молекулярных ионов. Наиболее трудно ионизируются винилацетилен (9,9 в) и изопропенилацетилен (10,1 в). Удлинение нормальной цепи углеводорода со стороны тройной связи ведет к снижению потенциала ионизации до 9,4 в (винилметилацетилен), а со стороны двойной — до 8,5 в (пропенилацетилен). Таким образом, потенциалы ионизации молекулярных ионов существенно различаются в зависимости от положения метильной группы. Эти данные интересно было бы сопоставить с [c.69]

    Наряду с развитием аналитических методов, учитывающих влияние различных факторов на точность определения потенциала ионизации и потенциала появления, проводились различные усовершенствования аппаратуры для устранения или сведения до минимума эффектов объемного заряда электронного пучка, разброса электронов по энергиям, провисания электростатических полей в ионный источник. Один из наиболее простых методов, с помощью которых может быть уменьшен разброс электронов по энергиям 295], состоит в следующем (рис. 43). Электроны, эмитируемые катодом, ускоряются и направляются в ионизационную камеру под действием потенциала 1/ь Промежуточный электрод / находится под отрицательным потенциалом Уя но отношению к катоду благодаря этому предотвращается попадание в ионизационную камеру электронов с малой энергией. Возрастание ионного тока, наблюдаемого при снижении абсолютного значения Уп на А д (1 1 остается постоянным), представляет собой ионный ток, образуемый моноэнергетичными электронами в диапазоне Лйя- Если абсолютное значение больше, а меньше, то обе эти величины однозначно определяют энергию электронов, образующих наблюдаемую разность в ионном токе. Если разность ионного тока выразить как функцию Ум, сохраняя Ук постоянным, то вблизи потенциала ионизации она становится равной нулю. Подобную схему без особого труда можно осуществить на обычном источнике типа Нира. [c.177]

    Изучение потенциалов ионизации сложных органических молекул и потенциалов появления осколочных ионов открыло широкие перспективы для аналитического применения низких ионизирующих напряжений. Масс-спектр, получаемый при ионизации многоатомных молекул электронами с энергией 50—70 эв, представляет собой совокупность молекулярных и осколочных ионов. Если ионизирующее напряжение больше потенциала ионизации, но меньше потенциала появления осколочных ионов, то масс-спектр анализируемого соединения будет содержать только один пик, отвечающий молекулярному иону. Такое упрощение масс-спектра обладает определенными преимуществами и может быть использовано для качестве1гного анализа смесей, а при наличии соответствующих калибровочных данных и для количественного определения концентрации компонентов в смеси. При этом исключаются сложные вычисления, неизбежные при расчетах обычных масс-спектров. [c.185]

    Чувствительность определений малых концентраций щелочных элементов н пламенах может быть увеличена добавлением к пробе другого щелочного металла. Увеличение аналитического сигнала в этом случае сводится к уменьшению степени ионизации определяемого элемента в присутствии другого легкоионизиру-емого элемента. Для достижения максимальной чувствительности и правильности анализа необходимо, чтобы степень ионизации определяемого элемента была минимальна и постоянна как в анализируемых пробах, так и в стандартных растворах. Степень ионизации зависит от температуры пламени, потенциала ионизации и концентрации определяемого элемеита, а также от концентрации электронов. Последняя зависит от содержания посторонних компонентов (прежде всего легкоионизируемых металлов), от стехиометрии н высоты аналитической зоны пламени. [c.162]

    Основные экспериментальные методы определения потенциалов ионизации основаны на нахождении предела сходимости спектральных линий в атомных спектрах или применении метода фотоэлектронной спектроскопии. Для вычисления потенциала ионизации атома следует рассчитать его энергию до и после ионизации и взять их разность. Такая процедура получила сокращенное название АССП, если расчет проводится методом Хартри—Фока. Более простой путь расчета /х заключается в использовании теоремы Купманса. [c.73]

    С точки зрения термодинамики удобнее пользоваться определением Малликена, по которому электроотрицательность (ЭО) равна полусумме потенциала ионизации (ПИ) и сродства к электрону (СЭ). Разные шкалы можно численно увязать между собой если поделить электроотрицательность по Малликену на 3,15, то получим электроотрицательность по Полингу. Электроотрицательности некоторых элементов, рассчитанные методом Поллинга, приведены в таблице 1. [c.12]


Смотреть страницы где упоминается термин Потенциал ионизации определение: [c.256]    [c.118]    [c.149]    [c.634]   
Общая химия (1979) -- [ c.29 ]




ПОИСК





Смотрите так же термины и статьи:

Методы определения потенциалов ионизации атомов и молекул

Определение потенциалов ионизации молекул и появления ионов

Потенциал ионизации

Потенциал ионизации определение понятия

Потенциал определение

Экспериментальные методы определения потенциалов ионизации

Электрофильтры потенциал в ионизация, определение



© 2025 chem21.info Реклама на сайте