Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Наполнители каучуков

    В последние годы наряду с одноступенчатой очисткой на нефтеперерабатывающих заводах стали применять очистку масляного сырья фенолом в две ступени с целью получения рафината, по свойствам не отличающегося от рафината одноступенчатой очистки высокоароматизированного рафината и экстракта, используемых в качестве мягчителя шинных резин и наполнителя каучуков. Согласно принципиальной схеме процесса двухступенчатой фенольной очистки, ароматизированный продукт (экстракт I) получают при неглубокой очистке сырья в первой ступени экстракции. Рафинат первой ступени очистки обрабатывают свежей порцией растворителя во второй экстракционной колонне, в результате чего получают рафинат и вторичный экстракт (экстракт II). Технологический режим работы установки двухступенчатой очистки фенолом деасфальтизата смеси сернистых нефтей следующий  [c.124]


    При производстве шин, резиновых технических изделий и полимерных материалов применяют различные по составу нефтяные продукты, выполняющие функции пластификаторов — наполнителей каучуков и мягчителей резин. Пластификаторы-наполнители улучшают пластические свойства каучуков и значительно удешевляют их. Вместе с тем по прочностным свойствам резины на основе маслонаполненных каучуков уступают продуктам без добавок. Пластификаторы-мягчители улучшают обрабатываемость резиновых смесей, диспергирование частиц сажи и других наполнителей в резиновых смесях, низкотемпературные свойства и удешевляют готовую продукцию. Обычно на 1 масс. ч. каучука вводят 0,3—0,8 масс. ч. пластификатора-наполнителя при производ- [c.390]

    В Советском Союзе работает несколько высокопроизводительных промышленных установок непрерывной адсорбционной очистки, на которых получают следующие масла трансформаторное, гидравлическое МГЕ-10А, технологические нафтеновые для производства химических волокон и замасливания хлопка (масла № 1—4). Кроме того, на этих установках очистки получают высококачественные моторные и индустриальные масла. Получаемые при десорбции ароматические масла могут быть использованы в качестве наполнителей каучука и мягчителей резиновых смесей, при синтезе присадок и флотореагентов (собирателей при флотации сульфидных руд цветных металлов). [c.253]

    Введение активных тонкодисперсных наполнителей резко повышает прочность резин на основе некристаллизующихся каучуков за счет образования дополнительных связей наполнитель — каучук и наполнитель—наполнитель. Большие количества наполнителя и пластификатора, снижающие содержание каучука в резине, сокращают ее долговечность, соответственно малые количества повышают ее. [c.114]

    VI. Технический углерод (сажа). Это мелкодисперсный сыпучий продукт, получаемый на специальных заводах. Основной потребитель — резиновая промышленность, где сажа используется как усилитель и наполнитель каучука. Специальные сорта технического углерода используются в качестве пигмента для изготовления типографских красок. [c.82]

    До настоящего времени белая сажа — двуокись кремния — является единственным промышленным белым наполнителем каучуков. В Советском Союзе и за рубежом ведется изучение возможности применения гидроокиси алюминия, [1—4] и окиси алюминия 15—7] в качестве активного наполнителя. Окись алюминия является лучшим наполнителем кремнийорганических каучуков [8]. [c.196]


    Сначала образуется карбониевый ион за счет взаимодействия катализатора с двойной связью макромолекулы, а затем карбониевый ион выступает в роли акцептора электронов и взаимодействует со следующей двойной связью. В образующихся циклических полимерах наряду с участками макромолекулы, построенными из конденсированных шестичленных циклов, имеются участки линейного полиизопрена. С увеличением степени циклизации каучуков повышаются их твердость, хрупкость, уменьшается растворимость. Такие каучуки могут быть использованы в качестве наполнителей. Каучуки с полностью полицикличе-ской структурой могут быть получены ионной полимеризацией соответствующих мономеров (см. с. 324, 326). [c.255]

    В технике ZnO — наполнитель каучука, пластмасс, целлюлозы. [c.442]

    Сорбционная способность наполнителя. Согласно взглядам академика П. А. Ребиндера активность наполнителя определяется сорбционной способностью и молекулярной природой наполнителя. При наличии у наполнителя сорбционной способности молекулы каучука определенным образом ориентируются относительно поверхности частиц наполнителя, образуя сольватные пленки. Пленки каучука, связанные адсорбционными силами с частицами наполнителя, обладают более высокой прочностью, чем остальной, так называемый объемный, каучук. Рентгенографические исследования вулканизата, наполненного газовой канальной сажей, при растяжении подтверждают наличие вблизи поверхности частиц наполнителя каучука, находящегося в особом ориентированном состоянии. [c.172]

    В настоящее время до 85% вырабатываемой сажи поступает в резиновую промышленность. Являясь наполнителем каучука, сажа улучшает (усиляет) его технические эксплуатационные свойства прочность, твердость, сопротивление истираемости, что особенно важно при изготовлении шин и разнообразных резино-технических изделий. [c.216]

    Наполнитель может участвовать в образовании структур двух типов 1) частицы наполнителя или их агрегаты беспорядочно распределены в массе каучука и в основном изолированы друг от друга прослойками каучука, 2) частицы наполнителя образу>от пространственную сетку. Характер образующейся структуры зависит от количества введенного наполиителя, его дисперсности, и также от соотношения прочностей связей наполнитель—каучук и наполнитель—наполнитель. Если связи наполнителя с каучуком прочнее, то образуется преимущественно структура первого гипа (такую структуру образуют неактивные и мaJизaктивIiыe наполнители). Если же прочнее связи наполнитель—наполнитель, то образуются цепные структуры, служащие матрицей, на которой укладываются и ориентируются молекулы каучука. Такие структуры образуют активные наполнители. [c.197]

    Ребиндер П. А., Маргаритов В. Б. Физико-химические основания активности и активации наполнителей каучука. — Резиновая промышленность , 1935, т. 12, № 11, с. 991. [c.255]

    II- ароматизированные масла -наполнители каучука, смягчители резиновых смесей и пр. В процессе адсорбционной очистки трансформаторного дистиллята получают 87 -89 % рафината I и б -8 % ароматизированного масла. [c.327]

    При этом меняется направление раздира, а следовательно, происходит колебание скорости и нагрузки. Вид раздира зависит от состава резины (наполнителя, каучука) и степени вулканизации. [c.128]

    Масла-мягчители вводят в состав резиновых смесей в производстве шин и других резинотехнических изделий для придания им эластичности и улучшения формуемости (пластификаторы -наполнители каучуков ПН-бк или ПН-бш). [c.258]

    Сажа широко применяется как активный наполнитель каучука. Она представляет собой высокодисперсную систему с размером частиц порядка нескольких сот А. Поэтому непосредственно наблюдать частицы сажи можно только в электронном микроскопе. [c.191]

    И наполнитель каучука.— Прим. ред. [c.613]

    Наполнитель каучука и пластификатор Ароматические экстракты УЕА — [c.1000]

    Из соединений цинка большое практическое значение имеют оксид, сульфат, хлорид и сульфид цинка. Оксид цинка служит основой для изготовления цинковых белил, отличающихся хорошей кроющей способностью и химической стойкостью. Значительное его количество используют в резиновой промышленности (наполнитель каучука в производстве автомобильных шин). Оксид цинка входит также в состав некоторых сортов стекла и глазурей. Сульфат цинка применяют для пропитки дерева (как противогнилостное средство), а хлорид цинка —для изготовления минеральных красок, для очистки поверхности при пайке латуни, меди, железа. [c.390]

    Ненаполненные резины (вулканизаты) из бутадиен-стирольных и а-метилстирольных каучуков имеют низкое сопротивление разрыву (2,5 МПа). В связи с этим применяются активные наполнители каучуков, главным образом сажи, различающиеся способом производства, дисперсностью, структурностью и др. Наиболее распространены высокодисперсные и высокоструктурные печные сажи типа SAF (ПМ-130), ISAF (ПМ-100), HAF (ПМ-70). Применяются также высокодисперсные сажи с низкой и очень низкой структурностью. Для изготовления протекторов автомобильных шин преимущественно используется сажа HAF, а также ISAF. Помимо указанных применяются активные канальные сажи типа MP (ДГ-100), ЕРС и др. Для получения белых и цветных резин при- [c.264]


    Адсорбционной очисткой на базе маловязких масляных дистиллятов вырабатываются масла из рафината I —трансформаторное, гидравлическое (типа ВМГЗ), технологические нафтеновые, специальные электроизоляционные типа МАПЭД-8 из рафи-ната II —ароматизированные масла —наполнители каучука, мягчители резиновых смесей и пр. [c.244]

    Пластификатор-наполнитель каучуков (ПН-бк) и мягчитель щинных смесей (ПН-бш) [c.462]

    Очистке подвергают масляные дистилляты и деасфальтизаты, фильтруя их растворы чорез слой зерненого или таблетированиого алюмосиликатного адсорбента. В результате получают фильтрат, из которого извлечены адсорбентом (адсорбированы) компоненты, отрицательно влияющие па качество масел. После отгона растворителя из фильтрата получают рафинат I, по качеству превосходящий рафинат селективной очистки. После вытеснения с поверхности адсорбента поглощенных им компонентов (в основ]]ом ароматических углеводородов) получают ароматическое масло-рафинат II, который может быть использован в качестве технологического масла (наполнителя каучуков, мягчителя резин, еылоносителя и для других целей). [c.231]

    Цинк применяют главным образом для приготовления различных сплавов и для покрытия металлов. Значительные количества цинка содержатся в сплавах, отвечающих составам [в /о(масс.)] 60 Си и 40 Zn — латунь 65 Си, 15 Ni и 20 Zn —нейзильбер. Из соединений цинка большое практическое значение имеют оксид, сульфат, хлорид и сульфид цинка. Оксид цинка служит основой для изготовления цинковых белил, отличающихся хорошей кроющей способностью и химической стойкостью. Значительное его количество используют в резиновой промышленности (наполнитель каучука в производстве автомобильных шин). Оксид цинка входит также в состав некоторых сортов стекла и глазурей. Сульфат цинка применяют для пропитки дерева (как противогнилостное средство), а хлорид цинка — для изготовления минеральных красок, для очистки поверхности при пайке латуни, меди, железа. Сульфид цинка применяют в производстве краски литопон (ZnS -f--t- BaS04), а также при изготовлении светящихся составов. В смеси с сульфидом кадмия dS он служит для изготовления экранов, телевизионных трубок, [c.431]

    Прочность связи наполнителя с каучу ком. Прочность связи наполнителя с каучуком зависит от смачивания наполнителя каучуком, который можно рассматривать как высоковязкую жидкую фазу. Смачивание зависит от поверхностного натяжения на границах раздела фаз газообразной (воздух), жидкой (каучук) и твердой (наполнитель). Если поверхностное натяжение на поверхности наполнитель — воздух обозначить ст в, на поверхности каучук — воздух и на поверхности между каучуком и наполнителем а н, то при установившемся равновесии их величины будут находиться в следующем соотношении  [c.170]

    В настоящее время выделены соли (цинкаты) состава Na[Zn(OH),j], Na2[2n(OH)jJ и др. Гидроксид Zn(0H)2 обладает амфотерными свойствами, он растворяется в кислотах и ще.чочах. Г идроксид Ц. растворяется также в водном аммиаке с образованием комплексных ионов [Zn NH 1)1 Ц.—сильный восстановитель, легко вытесняет из раствора другие металлы (Си, Fe и др.). Металлический Ц. применяют для оцинковывания железа, стальных изделий (предохранение от коррозии), для получения медных сплавов, в гальванических элементах. См. Цинка соединения. Цинка соединения. Оксид цинка ZnO — рыхлый белый порошок, применяют для получения цинковых белил (в отличие от свинцовых белил на воздухе не темнеет н безвреден), как наполнитель каучука, пластмасс, а также в медицине, косметике. Хлорид цинка Zn Ia— гигроскопическое вещество, применяют для пропитки дерева (напр.. Шпал), при травлении металлов, как обезвоживающее вещество. Суль фат цинка (цинковый купорос) ZnSO.rTH-zO применяют в производстве вискозы, как микроудобрения (под травы), для производства красок, в медицине. Сульфид цинка ZnS (в природе — минерал сфалерит) широко применяют как люминофор, в производстве красок (литопон). [c.154]

    Наилучшие результаты в качестве наполнителя каучуков этого тица дает коллоидная кремнекислота в силу взаимодействия с полярными группами полиоксипроппленовой цепи, а также различные образцы мелкой сажи. Модуль наполненного каучука лежит в пределах 4,9—19,6 МПа (50—200 кгс/см ). Прочностные характеристики варьируют, изменяя содержание наполнителя и применяя пластификаторы. [c.248]

    При усилении каучуков тер-мореактивными смолами необходимо получать смоляные частицы возможно меньшего размера. Смоляные частицы малого размера можно рассматривать как активные наполнители каучука. Они имеют высокое сродство поверхности к неполярному каучуку, модифицированному малыми добавками смолы, и эффективно повышают прочностные характеристики. [c.131]

    Возрастание величины А у <1ктивных наполнителей объясняется тем, что полимер обволакивает частицы наполнителя, / прочно связывается с ним в виде Рис. 142. Работа разрыва (за- Ориентированных пленок Мерой прочности этой связи обычно служит убыль свободной энергии системы, вызванная смачиванием 1 см поверхности наполнителя полимером и равная разности (5н—в — 5н-к), где 5н в и 5[, к — удельные поверхностные энергии на границе наполнитель — воздух и наполнитель — каучук. Чем меньше измельчен наполнитель, т. е. чем больше суммарная поверхность его частиц и чем выше сродство полимера к нему (меньше 5н к), тем больше убыль свободной энергии и прочность связи между компонентами композиции. [c.474]

    Разделение наполнителей на усиливающие и неусиливающие связано со смачиваемостью поверхности наполнителя каучуковой фазой. Если смачивания поверхности наполнителя не происходит, то на самых начальных стадиях деформации эластомера наблюдается отделение каучуковой фазы от поверхности наполнителя с образованием вакуолей и их рост по мере увеличения деформации, что в свою очередь, приводит к снижению жесткости и прочности наполненного эластомера. Совершенно очевидно, что с уменьшением смачиваемости поверхности наполнителя каучуком эффект усиления должен исчезать и системы по свойствам должны приближаться к губчатым или вспененным эластомерам. [c.130]

    Донне [461] развил представления о роли химического взаимодействия между насыщенными и ненасыщенными эластомерами и сажей и установил, что на поверхности хорошо усиливающих саж только 10% атомов водорода реакционноспособны, хотя повышенное содержание водорода способствует увеличению модуля резин. Химическое и адсорбционное взаимодействие с поверхностью сажевой частицы приводит к прочному связыванию с ней каучука. Доля связанного каучука определяется содержанием геля в смеси наполнитель — каучук. Связывание каучука может протекать по нискольким механизмам, а результаты этого процесса зависят от химической природы наполнителя и его удельной поверхности, причем содержание связанного каучука пропорционально этой поверхности. Содержание связанного каучука в твердой фазе зависит также от ненасыщенностй полимера, а в случае адсорбционного связывания — от полярности полимера [462].. [c.252]

    Размягчение, вызванное предшествующей деформацией, также тесно связано с рассеянием энергии или гистерезисом. Гистерезис в наполненных вулканизатах может быть вызван рядом причин, из которых, согласно Маллинзу [270], наиболее важны следующие 1) разрушение вторичных образований частиц наполнителя 2) перестройка молекулярной сетки без разрушения ее структуры 3) разрушение структуры сетки разрыв связей наполнитель — каучук или поперечных связей молекулярной сетки. Все эти процессы могут происходить одновременно. Однако разрушение структуры сетки, обусловленное разрывом связей между каучуком или наполнителем или разрушением поперечных связей, незначительно влияет на рассеяние энергии при малых и умеренных деформациях. В основе сеточных теорий усиления, рассмотренных Бики [536], лежит положение о том, что между цепями каучука и частицами усиливающего наполнителя существуют прочные связи и что неподвижные узлы сетки, образованные такими связями, оказывают влияние на механические свойства резины. Степень этого влияния зависит главным образом от числа связей и их прочности, а также от подвижности частиц наполнителя в среде каучука. Для [c.267]

    Каучуки различаются также по содержанию мономеров. Так. бутадиен-стирольный каучук СКС-30 получен из смеси мономеров, содержащей 30% стирола, а бутадиен-а-метилстирольный каучук СКСМ-30 — из смеси мономера, содержащей 30%) метилстирола. При масляном наполнителе каучук выпускается под маркой СКС-ЗОМ (высокотемпературный) и СКС-ЗОАМ (низкотемпературный). [c.166]

    Таким образом, технический углерод Хезакарб ЭЦ является активным наполнителем каучуков общего назначения, придающим полимерным композициям высокую электрическую проводимость. [c.21]

    Рассматриваемый материал был также обобщен в 1933 г. Грисс-бахом [7], который дал полную библиографию по вопросу об изготовлении и применении коллоидного кремнезема. Наиболее концентрированный золь, производившийся в то время, представлял собой продукт, выпускаемый И. Г. Фарбениндустри А. Г. и называемый К1езе1зо1 J. О. , который содержал 10% ЗЮг и был стабилизирован небольшим количеством аммиака. Был дан перечень методов приготовления золей с низким содержанием солей он включал диализ, электродиализ, пептизацию геля и реакцию взаимодействия силиката с кислотой, которая приводит к образованию относительно нерастворимых солей щелочных металлов, например кислого виннокислого калия. Также были церечпслены золи эфиров кремневой кислоты и четыреххлористого кремния. Затем рассматривались некоторые области применения золей кремнезема улучшение керамики и цементов, использование в текстильном и бумажном производстве, пропитывание древесины, стабилизация золей металлов, в качестве эмульгирующего агента, наполнителей каучука, при обработке табака (абсорбция никотина) и в медицине. Однако характеристики большинства золей были недостаточно определены и воспроизведение свойств золей для использования их в специфических целях представляет серьезную практическую проблему. [c.90]

    Халпин и Бики приписывают возрастание усиления процессам, увеличивающим временной интервал вязкоупругих движений системы наполнитель — каучук, и делают вывод о том, что снижение прочности при повышенных температурах обусловлено возрастанием скорости вязкоупругого отклика на деформацию образца. Из исследований Халпина — Бики следует важный вывод о применимости принципа температурно-временной суперпозиции к явлению разрушения усиленных эластомеров. [c.266]


Смотреть страницы где упоминается термин Наполнители каучуков: [c.152]    [c.464]    [c.465]    [c.216]    [c.211]    [c.356]    [c.172]    [c.42]   
Органическая химия (1968) -- [ c.422 ]

Органическая химия 1971 (1971) -- [ c.427 ]

Органическая химия 1974 (1974) -- [ c.353 ]

Основы технологии синтеза каучуков (1959) -- [ c.0 ]

Инфракрасная спектроскопия полимеров (1976) -- [ c.383 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие каучуков с наполнителями

Диэлектрические свойства каучуков влияние наполнителей

Маслостойкость каучуков вулканизатов влияние наполнителей

Механизм усиления каучуков наполнителями

Наполнители

Наполнители каучуков Напряжение в цикле

Наполнители каучуков активные усилители

Наполнители каучуков бутилкаучука

Наполнители каучуков кремнекаучуков

Наполнители каучуков полиизобутилена

Наполнители каучуков полиуретанов

Наполнители каучуков полихлоропрена

Пластичность каучуков влияние наполнителей

Прочность каучуков вулканизатов наполнителей

Раздир каучуков вулканизатов наполнителей

Раздир каучуков наполнителей

Рецепты резин на основе различных каучуков с ферритовыми наполнителям

Свойства вулканизатов натурального и синтетических каучуков (исключая силоксановый каучук), наполненных белыми усиливающими наполнителями

Сопротивление истиранию каучуков наполнителей

Теплостойкость каучуков вулканизатов влияние наполнителей

Химическое взаимодействие наполнителей и каучуков в процессе холодного вальцевания

Эластичность каучуков вулканизатов наполнителей



© 2025 chem21.info Реклама на сайте