Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярная сетка

    Чем выше температура вытяжки, тем меньше степень ориентации полимера при прочих одинаковых условиях (рис. VI. 1). При повышении температуры ускоряется процесс разрушения узлов молекулярной сетки. Среднее время жизни узлов экспоненциально зависит от температуры, поэтому при более высоких температурах разрушение узлов идет с большей скоростью. В результате такого распада сетки цепи свертываются, переходя в наиболее вероятное неориентированное состояние с максимальной энтропией. Поэтому [c.188]


    Классическую теорию равновесной деформации молекулярной сетки впервые предложил Кун наиболее полное развитие она получила в работах Трелоара [48]. [c.146]

    Некоторые исследователи считают, что процесс стеклования полимеров и неорганических стекол объясняется главным образом процессами структурирования физической природы, например в результате образования полярных узлов молекулярной сетки при понижении температуры. Вероятнее всего, процесс образования в линейных полимерах физических поперечных связей флуктуационной природы является не главным, а сопутствующим процессом, приводящим к дополнительной. потере сегментальной подвижности при понижении температуры. Например, бутадиен-нитрильные сополимеры содержат в цепи боковые полярные ни-трильные группы СЫ, которые способны образовывать поперечные физические связи между макромолекулами. Замечено, что чем больше концентрация в сополимере нитрильных групп, тем раньше происходит стеклование при охлаждении. Это явление не противоречит релаксационной теории стеклования, которая допускает, что низкомолекулярная жидкость, расплав полимера или эластомер изменяют структуру при понижении температуры. Структура, [c.86]

    Как отмечалось в гл. I, в большом мас-. штабе времени структура полимеров хорошо описывается моделью хаотически переплетенных цепей. Молекулярная сетка, обусловленная переплетениями макромолекул, отчетливо проявляется в опытах по вытяжке полимеров, например полиметилметакрилата, причем плотность сетки повышается с понижением температуры. В процессе течения в узлах происходит проскальзывание цепей, разрушение узлов и образование новых. [c.181]

    Так называемую классическую теорию равновесной деформации молекулярной сетки впервые предложил Кун. Затем эта теория была развита в работах Джемса и Гута, Уолла и особенно в работах Трелоара [77]. [c.107]

    В слабо сшитых полимерах (например, в вулканизатах каучуков) химические поперечные связи приводят к образованию редкой трехмерной молекулярной сетки. Эта сетка, препятствуя необратимому перемещению макромолекул друг относительно друга, в то же время не препятствует проявлению основного свойства цепей — [c.185]

    Ограниченное растворение полимера вследствие наличия в нем пространственной молекулярной сетки можно трактовать и с термодинамической точки зрения. Действительно, при набухании такого полимера гибкие участки макромолекул, лежащие между узлами сетки, растягиваются и распрямляются и, следовательно, энтропийные пружины переходят в менее вероятное состояние. В результате энтропия системы уменьшается, причем это уменьшение может стать равным увеличению энтропии в результате смешения. В этот момент набухание прекратится, т.е. система придет в равновесное состояние. Правильность приведенных рассуждений подтверждается наличием связи между модулем упругости полимеров и их способностью к набуханию (Флори). [c.446]


    В пространственно-структурированных полимерах молекулярная сетка относительно стабильна, онэ не подвержена разрушающему действию таких факторов, как температура и нагрузка. [c.186]

    В дальнейшем при рассмотрении деформации молекулярной сетки (резины) растяжения цепей сетки будут рассматриваться в этом линейном приближении. [c.107]

    Для полимеров, молекулярная масса которых М>Мк (Ж характеризует размеры отрезка цепи, определяемого физическими узлами молекулярной сетки полимера, ответственными за вязкое течение), при измерениях вязкости в условиях простого сдвига в статическом режиме нагружения оказывается справедливым соотношение г = АМ < (где А — постоянная для полимеров данного вида). Обычно самое низкое значение Л1к = 4000 у линейного полиэтилена, тогда как у ПС значение /И на порядок выше (4-10 ). [c.155]

    При исследовании процессов вытяжки и ориентации [6.8] некоторых полимеров, в частности ПММА, также было доказано наличие молекулярной сетки, образованной вторичными поперечными связями, концентрация которых увеличивается с понижением температуры. Вторичные поперечные связи являются временными узлами сетки и сравнительно легко распадаются и восстанавливаются в процессе теплового движения. Скольжение сегментов при деформации полимеров сопровождается разрывом и восстановлением вторичных (физических) узлов сетки. Линейные полимеры в отличие от сшитых имеют менее прочную молекулярную сетку, образованную физическими узлами различной природы. Поэтому при малых напряжениях они могут вести себя подобно сшитым (сеточным). Механизм вязкого течения полимеров нельзя рассматривать без учета их надмолекулярной структуры, а также представлений о существовании пространственной сетки в полимерах. [c.167]

    Степень вытяжки не определяет однозначно значение прочности и разрывного удлинения полимера. Одной и той же степени вытяжки могут соответствовать различные значения прочности, и, наоборот, одна и та же прочность может быть получена при различных степенях вытяжки. Средняя степень ориентации, определяемая двойным лучепреломлением, является более точной характеристикой ориентированного полимера. С другой стороны, прочность и разрывное удлинение не определяются одним двулучепреломлением. Образцы с одинаковым двулучепреломлением, ориентированные в различных условиях, могут разорваться на разных стадиях растяжения, хотя до момента ра рыва одного из образцов диаграммы растяжения их полностью совпадают. Таким образом, по степени ориентации невозможно однозначно определить прочностные характеристики ориентированных полимеров. Однозначную связь прочности и разрывных удлинений со строением ориентированного полимера удается установить лишь в том случае, если можно учесть два параметра — среднюю степень ориентации звеньев макромолекул и число цепей молекулярной сетки в единичном объеме, так как [c.327]

    Молекулярные сетки 3/215 Молекулярные сита 1/890, 928 2/27, [c.653]

    К полярным эластомерам относятся бутадиен-нитрильные каучуки СКН-18, СКН-26 и СКН-40. Их релаксационные спектры отличаются от спектров неполярных эластомеров тем, что наряду с -релаксационными переходами здесь наблюдается еще и л-процесс. В полярных эластомерах между полярными группами в макромолекулах (в бутадиен-нитрильных эластомерах — СЫ-группы) возникают локальные диполь-дипольные поперечные связи, которые являются одним из видов физических узлов молекулярной сетки эластомера. Они более стабильны, чем микроблоки надмолекулярной структуры (образованные полибутадиеновыми участками цепей), и менее стабильны, чем химические поперечные связи. В результате л-процесс (см. рис. 12.6), природа которого объясняется подвижностью локальных диполь-дипольных связей, характеризуется временем релаксации Тя большим, чем времена релаксации Я-процессов, и меньшим, чем время химической релаксации сшитого эластомера. [c.348]

    При погружении частиц ионита в воду происходит набухание их и растяжение пространственной молекулярной сетки (рис. 59 и 60). [c.194]

    При повышении температуры сшивающие связи в узлах молекулярной сетки желатинового студня разрываются, упругий желатиновый студень плавится и превращается в раствор. Теплый желатиновый раствор неограниченно смешивается с водой и глицерином. При понижении температуры желатиновые растворы постепенно теряют текучесть и в конце концов застудневают, если только их концентрация не оказывается слишком низкой (ниже 0,7—0,9%). Плавление и застудневание желатинового студня можно повторять неограниченное число раз. [c.184]

    Низкодисперсные системы не обладают способностью диффундировать в студни, так как частицы не могут проникнуть в петли молекулярной сетки, если размер их больше размера петель. В этом случае складываются такие же условия, как и при ультрафильтрации. Сходство еще более увеличивается благодаря тому, что полупроницаемые мембраны обычно являются типичными студнями. [c.488]


    Примечательно, что студень, в котором жидкая среда заменена чужеродной жидкостью, часто обладает повышенной жесткостью и не претерпевает усадки при высушивании. Молекулярная сетка такого модифицированного студня как бы теряет эластичность и способность сокращаться при удалении из нее среды. Кроме того, в таких студнях, как показал Германе, даже после их тщательного высушивания остается некоторое количество жидкости, что, вероятно, обусловлено чисто стерическими причинами. Ниже определенной степени набухания молекулярные цепи в студне весьма плотно упакованы и молекулы среды остаются как бы окклюдированными между ними. Продвигаться между тесно сблизившимися макромолекулами могут только молекулы жидкости, растворяющейся в высокомолекулярном соединении. Все вышеуказанное в некоторой степени объясняет тот общеизвестный факт, что остатки (следы) жидкостей, находящихся в пленках высокомолекулярных веществ, удаляются из них с большим трудом. [c.489]

    Для студней амфотерных белков максимальный синерезис наблюдается в изоэлектрической точке, так как в таком состоянии молекулы несут равное число разноименных зарядов, что способствует сжатию молекулярной сетки студня. С изменением pH среды (относительно изоэлектрической точки) синерезис уменьшается, так как молекулярные цепочки приобретают одноименный заряд, обусловливающий их распрямление и отталкивание друг от друга. [c.491]

    Превращение полимеров. Вулканизация — технологический процесс превращения сырого каучука в резину, при котором иод действием химического (например, сера) или физического (радиационное облучение) агента между молекулами каучука возникают химические связи и образуется пространственная молекулярная сетка. [c.238]

    Количество ионогенных групп, находящихся на поверхности гранул ионита, ничтожно мало по сравнению с количеством тех же функциональных групп внутри частиц ионообменной смолы. Поэтому ионный обмен происходит преимущественно внутри зерен ионита, куда диффундируют обменивающиеся ионы, проникая в ячейки макро-молекулярной сетки. Для очень крупных ионов размер ячеек сетки может оказаться слишком малым, и ионный обмен будет происходить только на поверхности зерна (ситовой эффект). [c.59]

    Специфичным свойством некоторых студней является возможность вытеснения жидкости, находящейся в петлях молекулярной сетки, какой-нибудь другой жидкостью. Если вторая жидкость смешивается с первой, то процесс можно осуществить простым погружением студня во вторую жидкость. Если жидкости не смешиваются, то необходимо использовать какую-нибудь третью жидкость, смешивающуюся с обеими. Так, если нужно заменить воду в водном студне углеводородом, то сначала воду вытесняют спиртом, который затем можио вытеснить смешивающимся с ним углеводородом. [c.489]

    Исследование реологических характеристик ПБХ в динамическом режиме измерения обнаружило два реологических перехода на кривых зависимости логарифма комплексной вязкости от обратной величины абсолютной температуры (рис. 7.2) [141, 169] первый при 175 - 180 °С, второй - при 185 - 200 °С. Это обусловлено существованием надмолекулярных структур и кристаллитов в расплаве ПВХ-Таким образом, результатом термомеханического воздействия является ступенчатое разрушение надмолекулярных образований с возникновением в расплаве трехмерной молекулярной сетки, узлами которой являются кристаллиты. При этом на всех этапах течение может происходить только путем разрыва и восстановления молекулярной сеткИ) т.е. реализуется так называемое химическое течение [37]. Для достижения температурной области, в которой устойчивыми единицами течения являются отдельные макромолекулы, а не надмолекулярные структуры, необходимо нагреть полимер выше температуры плавления кристаллитов, т.е. до 220 - 230 С. Но при этом возникает главная проблема - низкая термостабильность ПВХ, осложняющая течение прй [c.186]

    Имеются различные предположения о причинах термосенсибилизации под действием поливинилметилового эфира взаимодействием эмульгатора, адсорбированного на поверхности глобул, с молекулами эфира [79], образование в объеме латекса молекулярной сетки эфира с механическим захватыванием латексных глобул [80]. Для проведения термосенсибилизации можно использовать также полипропиленгликоль [81], водорастворимые поли-ацетали [82] и др. [c.608]

    В линейных полимерах сшивок нет, но - молекулярная сетка в них также образуется. В блоке полимера взаимодействие каждой макромолекулы со своими соседями не является одинаковым по всей ее длине. Как было указано в гл. I, имеются участки более слабого и более сильного взаимодействия, которые и играют роль временных узлов сетки. Узлами молекулярной сетки могут быть любые локальные взаимодействия между макромолекулами, начиная от мостиков, образованных соприкасающимися боковыми полярными группами, и кончая перехлестами и переплетениями самих цепей. Следует отметить, что такая вторичная сетка, образованная нехимическими связями, есть и в сшитых полимерах, но там ее проявление почти полностью маскируется сеткой химического происхождения из-за большой прочности химических связей по сравнению с вторичными связями. [c.186]

    Свойства полимера в ориентированном состоянии определяются не только средней степенью ориентации макромолекул, но и более тонкими особенностями его строения. Наличие у полимеров сравнительно широкого распределения по длинам цепей и узлов молекулярной. сетки разной стабильности приводит к тому, что появляются качественные отличия в ориентации полимера, вытянутого при высокой и низкой температуре. Чем выше температура вытяжки, тем интенсивнее идет процесс разрушения узлов молекулярной сетки, причем в первую очередь разрушаются слабые узлы. Конфигурационные и конформационные изменения цепей при их растяжении лимитируют более стабильные, но реже расположенные узлы. Поэтому все большая доля коротких молекул выходит из напряженного состояния и оказывается в свернутом неориентированном состоянии. В этом случае ориентированными оказываются преимущественно макромолекулы с большой молекулярной массой. Степень их ориентации непрерывно растет с увеличением степени вытяжки. Они находятся как бы в растворе неориентированных молекул с низкой молекулярной массой. Поэтому два образца, ориентированные до одинаковой степени при высокой и низкей температуре, могут отличаться не только общими удлинениями, но и длинами ориентированных молекул. В первом случае образец ориентирован в основном за счет длинных молекул, во втором— за счет веек молекул, имеющихся в образце. [c.189]

    Представления о сеточном строении линейных аморфных полимеров позволяют объяснить особенности диаграмм изометрического нагрева. При нагревании в полимере протекают два конкурирующих процесса, один из них ответственен за повышение напряжений, другой—за их релаксацию. Первый процесс связан с обычной кинетической упругостью, а второй — с распадом молекулярной сетки. В ориентированном полимере возникают силы, стремящиеся вернуть образец в первоначальное неориентированное состояние. Этому препятствует вандерваальсово взаимодействие между макромолекулами. При сравнительно низких температурах [c.192]

Рис. 1.12. Глобулярный микроблок, играющий роль полнфуикционального физического узла в молекулярной сетке полимера Рис. 1.12. Глобулярный микроблок, играющий роль полнфуикционального физического узла в <a href="/info/321024">молекулярной сетке</a> полимера
    Вязкое течение. Вязкое течение определяется самым медленным Яз-процессом, когда все физические узлы молекулярной сетки эластомера (структурные микроблоки), в том числе и самые прочные Яз-узлы, разрушаются в процессе течения. Вязкость эластомеров измеряется на ротационном вискозиметре в области малых скоростей деформации. Как следует из данных, приведенных на рис. 12.8, температурный коэффициент логарифма вязкости в уравнении г) = г)о ехр Ь ЦкТ)] не зависит от напряжения сдвига в исследуемом диапазоне. Энергия активации вязкого течения эластомера СКС-30 равна 55,5 кДж/моль, а для СКМС-10 она равна 52,5 кДж/моль. Эти значения практически совпадают с энергиями активации их Я-процессов релаксации. [c.342]

    Высокодисперсные коллоидные системы, а также растворы высокомолекулярных веществ с неслишком большими молекулами диффундируют в студни с различной скоростью, зависящей от размера диффундирующих кинетических отдельностей и частоты молекулярной сетки студня. [c.488]

    Реакции, ведущие к образованию подобных фигур, называют периодическими, или ритмическими. Это следствие одного из свойств студней (и гелей) —их способности принимать вследствие диффузии иоиы, молекулы низкомолекулярных веществ и частицы ультрамикро-гетерогенных систем, проникающих в петли молекулярной сетки. Скорость такой диффузии зависит как от частоты молекулярной сетки данной системы, так и от размера диффундирующих частиц. [c.243]

    Согласно взглядам, которые развиваются Б. А. Догадкиным и его сотрудниками, вулканизованный каучук обладает пространственной молекулярной сеткой, состоящей из сложно переплетающихся молекул каучука, в которой между молекулярными цепями в отдельных местах существуют межмолекулярные невалентные связи и химические связи. Концентрация, природа, распределение связей в пространственной сетке вулканизата, а также энергия связей оказывают сильное влияние и определяют важ-нейшие физпко-механические свойства вулканизата . [c.77]


Смотреть страницы где упоминается термин Молекулярная сетка: [c.41]    [c.146]    [c.187]    [c.195]    [c.198]    [c.29]    [c.124]    [c.127]    [c.342]    [c.160]    [c.383]    [c.513]   
Смотреть главы в:

Введение в науку о полимерах -> Молекулярная сетка




ПОИСК





Смотрите так же термины и статьи:

Сетки



© 2025 chem21.info Реклама на сайте