Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Подвижность частиц

    Метод ядерного магнитного резонанса (ЯМР), получивший широкое применение, в частности, для определения строения некоторых видов органических молекул, основан на исиользовании различия магнитных свойств атомных ядер. Так, спин ядра в атомах С, равен нулю, в атомах Н, ои равен половине, а в атомах Ы, — единице . Метод ЯМР дает возможность определять строение молекул некоторых органических соединений, подвижность частиц в кристаллах в разных условиях. Он все шире применяется при изучении кинетики и механизма химических реакций, состоятя веществ в растворах, процессов протонного обмена между молекулами в растворах, для анализа сложных смесей продуктов реакций и для других целей. [c.90]


Таблица 9. Зависимость между числами прилипания и электрофоретической подвижностью частиц Таблица 9. <a href="/info/25969">Зависимость между</a> <a href="/info/738409">числами прилипания</a> и <a href="/info/3859">электрофоретической подвижностью</a> частиц
    Работа состоит в измерении электрофоретической скорости частиц методом микроэлектрофореза в 2—3 суспензиях с различной концентрацией электролита (ио заданию). Затем рассчитывают электрофоретическую подвижность частиц и электрокинетический потенциал и строят график зависимости -потенциала от концентрации электролита. [c.106]

    По спектру ядерного магнитного резонанса можно определить свойства ядер, строение молекул, подвижность частиц в кристаллах в разных условиях, ЯМР применяется при изучении кинетики и механизма химических реакций, состояния вещества в растворах, процессов протонного обмена мел<ду молекулами в растворах, для анализа сложных смесей продуктов реакции. [c.62]

    Скорость истечения сыпучих материалов из отверстий и трубопроводов является функцией диаметра отверстия и не зависит от высоты слоя сыпучего материа.аа над отверстием. На скорость истечения также оказывает влиянне подвижность частиц сыпучего материала, выраженная углом естественного откоса. [c.67]

    Вибрационное напыление. Предварительно нагретая до температуры плавления твердой смазки деталь опускается в вибрирующий сосуд с порошком твердой смазки. Благодаря подвижности частиц порошка деталь почти не встречает сопротивления при погружении в сосуд. Последующее оплавление происходит или за счет поглощения тепла, или за счет дополнительного нагрева. Толщина покрытий составляет 0,1—0,8 мм. [c.209]

    Этот вывод и некоторые другие соображения, также говорящие в пользу зависимости подвижности от радиуса (влияние релаксации ионных атмосфер), все еще нельзя считать полностью подтвержденными экспериментально. Фрейндлих и Абрамсон (1927—1928 гг.) показали, что электрофоретическая подвижность частиц суспензий кварца и других веществ, покрытых адсорбированным яичным альбумином, не зависит от их размеров. Так как использовавшиеся при этом частицы были большими (>1 мкм), а толщина ионной атмосферы 1/и была мала (<10 см), то условие кг > 1 было выполнено и независимость от г объяснима. Однако Овербек в 1950 г. установил, что подвижность макромолекул яичного альбумина г = 2-10 см) та же, что и у больших частиц, покрытых альбумином, а это уже противоречит требованиям теории. В то же время Муни в 1924 г. нашел, что электрофоретическая подвижность мелких капель масла зависит от их величины. [c.140]


    Молекулярно-кинетическая теория плавления [170] исходит из положения, что уменьшение степени порядка в расположении частиц твердого тела начинается задолго до плавления в связи с увеличивающейся тепловой подвижностью частиц с ростом температуры. При этом растет число точечных дефектов структуры, что способствует разрыхлению кристаллической решетки. С дальнейшим повышением температуры в непосредственной близости от пл кристаллографически правильное расположение частиц теряет устойчивость, причем решающая роль в разрушении дальнего по- [c.158]

    IV.5.13. Рассчитать электрофоретическую подвижность частиц карбоната стронция в Е оде, если рассчитанный [c.84]

    Сопряжение стадий единой реакции. Сопряжение различных реакций. Сопряжение циклов реакций Ассоциативный через общие координационные соединения или через общие продукты диссоциации. С помощью подвижных частиц-переносчиков электронов, Н-атомов и т. д. С помощью матричных структур [c.305]

    Рассматривая вероятности этого события как экспоненциальную функцию отношения критического Уг ) и свободного Vf) объемов в полимере, можно подвижность частиц представить в виде [c.78]

    Еще труднее непосредственно измерить температуру твердых частиц, внутри которых — из-за малых размеров — заделка спая термопары практически невозможна, не говоря уже о нарушении при этом подвижности частицы. Кроме того, возможны ошибки в определении мгновенной координаты частицы, а также связанные с тепловой инерцией системы частица — спай. В связи с отмеченными затруднениями часто пользуются косвенной оценкой температуры твердых частиц. Например, ее принимают по показаниям обнаженной термопары в псевдоожиженном слое (или при внезапном прекращении дутья), приравнивают температуре газа па выходе из слоя (Т ) при достаточной его высоте (Я Яд) или вычисляют из теплового баланса. Нет оснований [c.453]

    IV,5.16. Вычислить электрофоретическую подвижность частиц оксида железа по следующим данным скорость электроосмоса через диафрагму из таких же частиц в том же растворе у = 2-10 м /с 1,2-10 Ом -м = =2-10- Ом 1-м 1 /=1,6-10- А е = 81 т)=1 - 10- Па-с. [c.85]

    Рассмотрим кинетику коагуляции (агрегации) мелких частиц (с линейными размерами от 10 до 10 см). Различают два вида диффузии взвешенных мелких частиц, способствующих их относительному перемещению а) молекулярная диффузия частиц, при которой подвижность частиц обусловлена их бомбардировкой молекулами сплошной среды коэффициент молекулярной диффузии сферической частицы радиуса а определяется формулой [80] [c.88]

    Важным свойством сыпучего материала является подвижность ein частиц. Относительная взаимная подвижность частиц сыпучего материала зависит от наличия сил сцепления между отдельными частицами и от ве.личины сил трения, возникающих при перемещении частиц относительно друг друга. Она характеризуется углом киу-треннего трения, углом естествопного откоса, углом обрул1и-вания, углом скольжения. [c.59]

    Релаксационные явления свойственны не только высокомолекулярным веществам. Мы уже сталкивались с явлением релаксации при рассмотрении кинетических свойств газов ( 35) и электропроводности растворов электролитов ( 168). Релаксация наблюдается и во многих других системах и явлениях. Однако в низкомолекулярных системах подвижность частиц настолько велика, что релаксация заканчивается в кратчайшие промежутки времени, измеряемые тысячными или миллионными долями секунды или еще быстрее. Поэтому в тех системах с влиянием релаксации прихо дится сталкиваться только при рассмотрении процессов, происхо дящих с очень большими скоростями. Но в полимерах рассмотрен ные выше особенности внутреннего строения и затрудненность пе ремещения частиц, обусловленная различными связями между цепями, приводят к тому, что некоторые перемещения частиц про исходят чрезвычайно медленно. Это приводит к малой скорости соответствующих релаксационных явлений и существенно отражается на многих свойствах. [c.580]

    Имеющиеся в литературе результаты относятся к исследованиям поведения коллоидных и аэрозольных дисперсий. Нас же интересуют дисперсные системы типа жидкость — жидкость, поведение которых может существенно отличаться от поведения аэрозольных и коллоидных систем вследствие различной подвижности частиц в этих системах, обусловливаемой вязкостными свойствами непрерывных фаз, разностью плотностей фаз и размерами частиц. Если коллоидные системы обладают полидисперсностью второго порядка (размер их частиц 10" — 10 см), то полидисперсность водонефтяных эмульсий на два порядка выше (10- —10 см). [c.82]

    Молекулярная диффузия частиц, при которой подвижность частиц обусловлена их бомбардировкой молекулами сплошной среды. Коэффициент молекулярной диффузии сферической частицы радиуса R определяется формулой Эйнштейна [c.89]


    Наведенная турбулентная диффузия частиц в масштабах, меньших внутреннего масштаба турбулентности (см. Приложение, раздел 2), при которой подвижность частиц обусловлена влиянием мелкомасштабных затухающих пульсаций, возбуждаемых внешним полем турбулентных пульсаций с размерами, большими Яц. [c.90]

    В уравнения (17) и (18) входят величины заряда и подвижности частиц, поэтому, зная изменение концентрации частиц под действием электрического поля и время его действия, можно найти искомые величины. [c.22]

    Подвижность фракций кокса характеризуется также углом естественного откоса. Взаимная подвижность частиц кокса зависит от наличия сип сцепления между отдельными частицами и от коэффициента внутреннего трения. По мере удаления влаги уменьшаются сипы поверхностного сцепления между отдельными частицами. Это способствует повышению их подвижности и увеличению скорости высыпания кокса из бункеров. Методически угол естественного откоса ос определить несложно (рис. 10). В табл. 2 приведены значения углов естественного откоса фракций кокса в зависимости от влажности. С некоторым приближением угол естественного откоса можно принять равным углу внутреннего трения для фракций крупнее 10-6 мм. [c.32]

    Особые условия создаются в материале, в котором соотношение между матрицей и наполнителем таково, что вся матрица заключена в поверхностных слоях и отсутствует в свободном> состоянии. Такой материал обладает ярко выраженной неаддитивностью свойств, большой их специфичностью. Это обусловлено тем, что вешество матрицы, находясь в поверхностном слое под действием сил адгезии в сжатом состоянии, изменяет свои свойства. Кроме того, резко изменяется подвижность частиц наполнителя. Так как частицы находятся на близких расстояниях, то между ними действуют значительные силы притяжения, дополнительно упрочняющие [c.393]

    При анализе процессов деформирования полимеров в высокоэластическом состоянии подвижность кинетических элементов структуры (сегментов) принимается аналогичной подвижности частиц идеальных газов. Это допущение оказывается справедливым для деформаций не более 50%. Большие деформации, характерные для полимеров в высокоэластическом состоянии, реализуются за счет не только едэ, но и Еу и (см. рис. 3.7). Эти деформации обусловливают изменение не только но и энтальпии полимера АЯ. [c.139]

    Таким образом зета-потенциал — это тот потенциал, который существует, с одной стороны, между твердой частицей и слоем среза, вместе взятыми, и раствором — с другой. Это не что иное, как та сила, посредством которой две частицы с одинаковыми зарядами способны отталкивать друг друга или одна частица (или нон), обладающая зарядом одного знака, в состоянии притянуть другую с зарядом противоположного знака. Следовательно, зета-потенциал непосредственно влияет на подвижность частиц в электрическом поле. Больше того, зета-потенциал вообще определяет асе электрокинетическое поведение частицы. По этой причине величина и значение этого потенциала являются наиболее важными показателями частиц коллоида. Совершенно очевидно, что в том случае, если зета-потенциал недостаточно высок, вещество окажется лишенным свойств коллоида. [c.75]

    Практический интерес при изучении вязкостных характеристик жидких дисперсных систем представляют реологические исследования. Реологическим исследованиям нефтяных систем уделяется значительное внимание. Особые трудности при этом возникают из-за проявления отклонения их поведения во многих случаях от поведения ньютоновских жидкостей. Реологические исследования позволяют связать макроскопические деформации и течение нефтяной дисперсной системы с мгновенными конфигурациями и движением ее гидродинамически подвижных частиц. В свою очередь вязкое сопротивление является функцией межмолекулярных взаимодействий в системе, определяющих ее инфраструктуру. [c.88]

    Разница между рассмотренным и реальным случаями заключается в том, что частица, по отношению к которой исследуется диффузия, на самом деле не неподвижна, а имеет ту же подвижность, что и диффундирующие к ней частицы. Поэтому необходимо трактовать эту проблему как относительное движение двух подвижных частиц. Если х — среднеквадратичное перемещение одной из них, а л 2 —другой (за одинаковое время 1), то, согласно формуле Эйнштейна для броуновского движения, соответствующие коэффициенты диффузии равны [c.201]

    Прп отстойном центрифугировании решающее значение имеет разность плотностей частиц парафина и жидкой среды перерабатываемой суспензии, поскольку эта разность обусловливает движущую силу разделения и определяет эффективность центрифугирования. Растворы депарафинируемых продуктов в некоторых растворителях, например растворы многих очищенных остаточных масел в кетоп-бензол-толуоле, несмотря па весьма благоприятную в ряде случаев структуру и консистенцию (компактность и подвижность частиц парафина в жидкой среде), практически все же не поддаются разделению центрифугированием вследствие малой разности плотностей частиц парафина и жидкой среды. Вследствие указанной причины для процессов депарафинизации центрифугированием приходится подбирать растворители такой плотности, чтобы эта разность была достаточно высокой. При выборе растворителей для процессов депарафинизации центрифугированием нужно иметь в виду, что плотность парафппо] в твердом состоянии равна 0,90—0,93 для дистиллятных продуктов и 0,92—0,95 для парафинов, содержащихся в продуктах остаточного происхоячдения. [c.133]

    Измерение скорости электрофореза выполняли в специально сконструированной кювете, схема которой дана на рис. 12.1. Рабочую стеклянную кювету 1 в виде прямоугольного парал-лепипеда с открытыми торцами длиной 20 мм и поперечным сечением 20x0,8 мм помещали между двумя сосудами 2 также прямоугольного сечения, изготовленными из оргстекда. Толщина стенок измерительной ячейки составляла 0,2 мм, что обеспечивало надежную визуализацию микрообъектов при работе с темнопольным микроскопом. Боковые емкости 2 в месте их сочленения с кюветой имели ряд отверстий диаметром 0,5 мм эти емкости прочно закреплялись на основании 3, в котором было высверлено отверстие для вхождения темнопольного объектива 4. Б нижнюю часть емкостей 2 помещали гель агар-агара 5, приготовленный на 1 н. растворе КС1 сверху заливали 0,1 и. раствор USO4 (б) и помещали медные электроды 7. Такая установка удобна в обращении в ней обеспечена герметичность сочленения боковых емкостей с измерительной камерой и возможность тщательной очистки последней после проведения исследований. На основании данных о подвижности частиц дисперсной фазы вычисляли -потенциал по формуле Гельмгольца — Смолуховского без учета поправки на поверхностную проводимость [59]. [c.202]

    При вводе газа в слой через расположенные с определенными интервалами щели, сопла или отверстия движение твердых частиц вблизи распределительной решетки (между точками ввода газа) отличается от их движения в основной массе слоя. На неко-торол расстоянии от решетки люгут встретиться застойные зоны с совершенно неподвижными твердыми частицами, малоподвижные зоны с периодической пульсацией зернистого материала или зоны с полностью подвижными частицами. Комбинации указанных вариантов встречаются во многих системах по всему распределительному устройству или в отдельных его частях. [c.706]

    Молекулярно-кинетическая теория плавления исходит из положения. что уменьшение степени порядка в расположении частиц твердого тела начинается задолго до плавления в связи с увеличива-юп1,ейся тепловой подвижностью частиц с повышением температуры. При этом растет число точечных дефектов структуры, что способствует разрыхлению кристаллической решетки. С дальнейшим повышением температуры в непосредственной б.тизости от кристалло-графпческп правильное расположение частиц теряет устойчивость, причем решающая роль в разрушенип да.льного порядка переходит к появляющимся более или менее значительным флуктуациям плотности, в которых участвует значительное число атомов. [c.8]

    А. Общие характеристики. Типы псевдоожижения. В псевдоожиженном слое, состоящем из мелкодисперсных частиц, восходящий поток жидкости или газа в точности уравновешивает силу тяжести частиц, которые поэтому уже не находятся в постоянном ко1ггакте друг с другом. Таким образом, достигается подвижность частиц, вследствие чего и поведение всего слоя в целом напоминает поведение жидкости. [c.154]

    Нефтяной кокс при длительном хранении теряет свою подвижность - частицы слеживаются. Такое явление часто наблюдается у суммарного кокса и мелких фракций. С повьш1ением влажности и увеличением высоты слоя засыпки кокса опасность слеживания возрастает. Нефтяной кокс как слеживающийся и смерзающийся материал в хранилищах образует монолит, при этом закупориваются отверстия бункеров, что препятствует их опорожнению. [c.33]

    Чтобы объяснить реологическое поведение таких систем, обратимся к кинетическим представлениям о структуре, которую можно рассматривать как структурную сетку из подвижных частиц, на-ходяихихся под действием броуновского движения. Для выхода частицы из структурного каркаса ей необходимо преодолеть энергетический барьер. С увеличением наиряжения сдвига вероятность разрушения структуры возрастает. Другим важным параметром структуры является время релаксации, которое характеризует скорость восстановления структуры. При малых временах релаксации структуры успевают восстанавливаться в процессе течения даже при больших напряжениях сдвига. [c.376]

    Электрофоретическая подвижность частиц дисперсной фазы определяется величиной -потенциала. В соответствии с уравнением (III. 16) толщина диффузного слоя, а отсюда и -потенциал уменьшаются с ростом концентрации электролита (при постоянной концентрации потен-циалобразующих ионов и постоянных значениях температуры и диэлектрической проницаемости). [c.93]

    Подвижность частиц ди персной фазы под действием электрического поля в значит льной степени зависит от вяз-кскти масла. Увеличение вязко гги и загрязнения масла нерастворимыми продуктами прок сходят параллельно, однако основное приращение зкост) 1 обусловливается результатом адсорбционно-сольватно о вза ]модействия частиц дисперсной фазы и дисперсионной с )еды. [c.115]

    Проводимость битумов этих же типов была измерена непосредственно при напряженности поля 20 ООО В/см. При низких температурах, когда вязкость высока, удельная электропроводность составляет всего 10- Ом- -см-1 и менее. Она быстро возрастает с ростом температуры вследствие большей подвижности частиц при пониженной вязкости. Максимальная измеренная удельная электропроводность, равная 50 и 41Ом -см была у мексиканского остаточного и светлоокрашенного битума при 90 °С. Для сравнения можно отметить, что удельная электропроводность ультрачистой воды равна 5-10 Ом -см- [46]. [c.42]

    Фрэмтон и Гортнер (см. ссылку 81) сообщают о произведенных ими измерениях электрофореза самых разнообразных водных дисперсий углерода. Они отмечают весьма примечательное однообразие подвижности частиц углерода, независимо от большого различия в их размере, чистоте и источнике происхождения. Полученные ими данные составляют содержание табл. 10, из которой видно, что даже активирование углерода не оказывает никакого влияния на подвижность частиц (см. образец 5). [c.83]

    Гайек в своем труде (см. ссылку 90) ставит под сомнение важность значения зета-потенциала для неводной среды. Он определил подвижность суспензий углерода в керосине и цетане (нормальном гексадекане) как в присутствии, так и в отсутствие агентов, способствующих сохранению взвешенного состояния. В качестве таких агентов он пользовался рядом поверхностноактивных средств. Гайеку удалось установить, что в некоторых случаях частицы оказались положительно заряженными, в других случаях — обладающими отрицательным зарядом, а в третьих случаях — нейтральными. Он наблюдал также случаи постоянства подвижности и, наоборот, случаи изменчивости таковой. Однако ему не удалось установить явно выраженной связи между подвижностью частиц и устойчивостью углеродной суспензии. На основании этого он пришел к заключению, что создание для частиц углерода условий, обеспечивающих их нахождение в нефтяном растворителе во взвешенном состоянии, не зависит в сколько-нибудь значительной степени от заряда, которым обладают частицы. Такой вывод, казалось бы, противоречит открытиям Стёбблбайна (см. ссылку 91). Однако последний добавлял к своим растворам ацетон, с целью увеличения проводимости. Возможно, что в таком случае уравнение Гельмгольца-Смолуховского сохраняет овою силу. [c.101]

    Электрофорез [1—3]. Движение заряженных частиц под влиянием внешнего электрического поля и находящихся во взвешенном состоянии в неподвижной жидкости называется электрофорезом. Это явление можно представить себе следующим образом. Частицы жидкости окружены двойным электрическим слоем. При приложении электрического поля распределение зарядов частиц в дуффузном слое нарушается вследствие смещения их по отношению к частице и непрерывного обмена ионными атмосферами вокруг частиц. В то же время сами частицы под действием электрического поля движутся по направлению противоположно заряженного полюса. Измерив скорость движения частиц и зная градиент потенциала приложенногс электрического поля, можно рассчитать электрофоретическую подвижность частиц С/эф (так назьшают путь, проходимый частицей за одну секунду в поле с градиентом потенциала 1 в/см). Тогда [c.168]


Смотреть страницы где упоминается термин Подвижность частиц: [c.59]    [c.59]    [c.174]    [c.180]    [c.76]    [c.77]    [c.15]    [c.21]    [c.158]    [c.272]    [c.83]    [c.83]   
Аэрозоли-пыли, дымы и туманы (1972) -- [ c.85 ]

Аэрозоли-пыли, дымы и туманы (1964) -- [ c.85 ]

Трение и износ полимеров (1972) -- [ c.147 ]

Сочинения Теоретические и экспериментальные работы по химии Том 1 (1953) -- [ c.605 ]

Аэрозоли - пыли, дымы и туманы Изд.2 (1972) -- [ c.85 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбированные слои частицы подвижные

Определение электрофоретической подвижности латексных частиц

Отсутствие равновесия подвижной фазе в порах частиц

Подвижность адсорбированных частиц

Подвижность заряженных частиц

Подвижность коллоидных частиц, liO

Подвижность частиц сыпучего материала

Применение стабильных радикалов для изучения подвижности частиц в жидкой фазе

Сведберг величина No золи металлов подвижность частиц

Соотношение скоростей витания и осаждения частиц в подвижной среде

Характер движения заряженных частиц в газе при наличии внешнего поля. Подвижность ионов и электронов

Частицы электрофоретическая подвижность

Электрофоретическая подвижность коллоидных частиц и капелек

Электрофоретическая подвижность латексных частиц



© 2025 chem21.info Реклама на сайте