Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель, сульфид дезактивация

    Интенсивность действия каталитического яда тем выше, чем больше энергия его химического взаимодействия с активным компонентом катализатора, чем труднее его химическая регенерация или десорбция яда. Обычно дезактивирующая способность каталитического яда растет с увеличением его атомной или молекулярной массы. Так, отравляемость гидрирующих катализаторов никель — оксид хрома соединениями серы, селена и теллура растет от S к Те. С другой стороны, отравление металлических (Pt, Ni) катализаторов органическими соединениями серы (меркаптаны, сульфиды) растет с увеличением длины цеии органического радикала фиксированная на активном участке поверхности атомом серы молекула яда вращающимся вокруг него по поверхности алифатическим радикалом экранирует и ближайшие участки поверхности, препятствуя адсорбции на них компонентов реакции. Частичное отравление энергетически неоднородной поверхности может в случае сложных реакций влиять на течение лишь отдельных стадий, чем можно регулировать селективность каталитического действия и повышать выход целевого промежуточного продукта торможением последних (или параллельных) стадий процесса. Практически важным случаем является дезактивация катализаторов побочными продуктами реакции, отлагающимися на поверхности, например закоксовывание катализаторов нефтехимических про- [c.305]


    Заключение. Оба катализатора дают достаточно близкие константы скорости, мало различаются по коэффициентам адсорбции и благоприятствуют протеканию ароматизации. Различие между ними заключается в первую очередь в более высоком (примерно в три раза) абсолютном значении коэффициента адсорбции для сульфида никеля, что практически означает увеличение скорости при применении этого катализатора. Максимальная скорость была достигнута при отношении Ряц 1Р 4. в промышленных условиях процесс обычно проводят при более высоких значениях а, что несколько снижает начальную скорость, но вместе с тем замедляет и дезактивацию катализатора. [c.7]

    Осаждение смолистых и углеродистых отложений дезактивирует катализатор скорость дезактивации зависит от рабочей температуры. Загрязнение поверхности катализатора подавляет окисление H2S кислородом. Когда содержание кокса на катализаторе достигнет около 6% при рабочей температуре примерно 370° С или 2% при 250° С, катализатор необходимо регенерировать. При высокой рабочей температуре отложения состоят пз продуктов сухой перегонки, менее вредных для катализатора. Поэтому обычно процесс проводят при максимально возможной температуре. Поверхность катализатора загрязняется пикратами ацетиленовыми и диолефиновыми углеводородами и циклопентадиеном цианистый водород п окислы азота не оказывают вредного влияния. Регенерацию катализатора проводят выжигом отложений с воздухом. Выжиг смолистых отложений начинается при 240—245° С, но для удаления углеродистого материала (кокса) требуются более высокие температуры. Реакции выжига сильно экзотермичны перегрев катализатора сверх 566° С пе допускается. Во время регенерации полу-сульфид никеля взаимодействует с кислородом, образуя смесь окиси и сульфата никеля, которая под действием H2S, содержащегося в газе, повторно переходит в сульфидную форму. Если температура регенерации достигнет 595° С, никель начинает взаимодействовать с кремнеземом фарфорового носителя, и при 980° С около 10% никеля превращается в силикат, совершенно лишенный активности. [c.193]

    При 600° С в результате добавления к природному газу сероуглерода в количестве, эквивалентном 5 мг происходит постепенное уменьшение активности катализатора (количество сорбированной катализатором серы составляет при этом около 3 мг/г N1). Вследствие малой скорости образования сульфидов никеля при указанных условия полная дезактивация катализатора наступает только через 80 ч после добавления сероуглерода. [c.71]


    В условиях гидроочистки температура и парциальное давление водорода и сероводорода являются определяющими для сохранения катализатора в сульфидной форме. Установлено, что наивысшей активностью обладают дисульфид молибдена и смешанный сульфид никеля (NiS и N 82). Катализатор АНМ -нуждается предварительном осернении, а для катализатора АКМ это требование не обязательно [69]. В процессе работы на катализаторе-откладывается сравнительно м-ного кокса, серы и металлов — соответственно 7—20 0,5—1,5 и 12—25% от массы катализатора., При этом он теряет актив1ность и степень обессеривания продуктов, при его использовании снижается — происходит нормальное старение катализатора. Основным признаком падения активности катализатора является увеличение содержания серы в продукте гидроочистки. К более быстрой дезактивации приводит  [c.225]

    Вещества, устойчивые к образованию сульфидов в объеме в лрисутствии НаЗ (10—1000 млн ), могут быть отравлены в ре-зз льтате поверхностной сульфидации. Этот вид отравления изучен недостаточно. Ничего не известно о том, может ли частичное отравление поверхности вызвать общую дезактивацию металла. Разработка катализаторов, обладающих общей стойкостью к отравлению серой, требует долгосрочных исследований в нескольких областях. Первая из них должна касаться химии образования поверхностных сульфидов (возможный метод исследования — электронная спектроскопия), вторая — сильных взаимодействий, включающих активный металл, например никель, и носитель или другое вещество, как средства для улучшения их стойкости к отравлению серой. Если это взаимодействие приводит к образованию соединения, то можно ожидать снижения активности, но оно может быть скомпенсировано нечувствительностью к сере и возможностью работы при высокой температуре. Одним из интересных взаимодействий является изъятие цеолитовыми носителями электронов из металлов группы платины, приводящее к улучшению стойкости к отравлению серой. Достойным внимания является применение этого эффекта к катализаторам метанирования. [c.238]

    Чувствительность отравляемых серой катализаторов к дезактивации можно изменять, нревраш ая активные компоненты в соответствующие комплексные или простые химические соединения. В нрисутствии водорода и сероводорода никелевые катализаторы без носителей образуют [143] сульфид никеля в случае ка-уализа-торов на кизельгуровом носителе или состоящих из силиката пикеля образование сульфида не наблюдалось. Для осажденного окиснокобальтового катализатора на диатомите в качестве носителя установлено [144] существование взаимодействия между катализатором и носителем, приводящего к образованию комплекса, который характеризуется высокой стойкостью к восстановлению до металлического кобальта. Этот комплекс, очевидно, обладает стойкостью и к образованию сульфида. [c.395]

    Потеря активности никелевых катализаторов, вызываемая малыми количествами серы, в наибольшей степени проявляется при использовании современных более активных катализаторов. Обычно для таких катализаторов концентрация серы не должна превышать 0,5 р. р. т [5.1, 5.2]. Недавно авторы работы 5.3] установили, что отравляющее влияние серы на никелевый катализатор конверсии обратимо, активность полностью восстанавливается, если снизить содержание серы в сырье ниже определенного критического уровня. Чувствительность к отравлению серой увеличивается при понижении температур конверсии (табл. 5.1). Более высокие значения предельных концентраций серы в работе [5.2] 1 объясняются тем, что в ней исследованы менее активные катализаторы. Отравление никеля происходит в результате реакции между ним и серой. Поскольку для заметной дезактивации катализатора достаточно лишь малых концентраций серы, то реакции, приводящие к образованию объемного сульфида ЗЫ1- -2Н23 = Ы1з32 + 2Н2, не учитываются. Количества никеля и серы, вступающих в реакцию между собой, очень мало. Так, катализатор конверсии, содержащий 15% (масс.) N1, после отравления при 775°С содержал 0,005% серы, что соответствует сульфированию 0,06% никеля. [c.88]

    Отравление никелевого катализатора наступает в результате хемосорбции яда на поверхности активного металла с образованием каталитически неактивных сульфидов, оксидов, хлоридов и т. д. Для дезактивации катализатора достаточно отравление лишь незначительной части поверхностных атомов никеля. Адсорбция одной молекулы НгЗ на 1000 поверхностных атомов никеля уже вызывает сильное отравление катализатора, поскольку в первую очередь происходит отравление наиболее активных мест поверхности. Полное отравление катализатора эндотермической паровой конверсии (20% N10) при температуре 780 °С на выходе из труб и давлении 3,2 МПа наступает при адсорбции НгЗ порядка З-Ю г З/г N1. Величина поверхности никеля в катализаторе паровой конверсии составляет около 1 м /г. Полное покрытие этой поверхности требует адсорбции 4,42-10 г 5 на 1 г никеля на поверхности катализатора [13]. Отсюда следует, что при указанных выше условиях около 70% поверхности никеля блокировано ядом. Поскольку в процессе катализа на поверхности никеля все соединения серы превращаются в сероводород, то отравление сводится к обратимой хемосорбции 4 ероводорода  [c.66]


    СХОДНЫ с сульфидом молибдена. С другой стороны, оксидные комплексы, например хромит никеля, которые восстанавливаются водородом перед их использованием, чувствительны к обычному отравлению вследствие содержания в них никеля или другого металла кроме того, гидрогенизациоиная активность катализатора такого типа частично может быть обусловлена более трудно восстанавливаемой окисью хрома. Вышеупомянутое обобщение относительно того, что чувствительность к отравлению ограничивается металлическими катализаторами, оказывается, однако, не без исключений. Например, активность окиси алюминия при дегидратации этилового спирта понижается следами паров воды [4] эффект дезактивации можно ожидать как вследствие сильноГ адсорбции воды безводной окисью алюминия, так и потому, что вода является одним из продуктов реакции .  [c.102]


Смотреть страницы где упоминается термин Никель, сульфид дезактивация: [c.285]    [c.72]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Дезактивация

Никель сульфид



© 2024 chem21.info Реклама на сайте